Suppr超能文献

有机/聚合物微光致发光体的分子和超分子设计用于先进的光学和激光应用。

Molecular and Supramolecular Designs of Organic/Polymeric Micro-photoemitters for Advanced Optical and Laser Applications.

机构信息

Department of Materials Science, Faculty of Pure and Applied Sciences, and Tsukuba Research Center for Energy Materials Science (TREMS), University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki 305-8573, Japan.

Leibniz Institute of Photonic Technology, Albert-Einstein Str. 9, 07745 Jena, Germany.

出版信息

Acc Chem Res. 2023 Jun 20;56(12):1469-1481. doi: 10.1021/acs.accounts.3c00084. Epub 2023 May 23.

Abstract

ConspectusFor optical and electronic applications of supramolecular assemblies, control of the hierarchical structure from nano- to micro- and millimeter scale is crucial. Supramolecular chemistry controls intermolecular interactions to build up molecular components with sizes ranging from several to several hundreds of nanometers using bottom-up self-assembly process. However, extending the supramolecular approach up to a scale of several tens of micrometers to construct objects with precisely controlled size, morphology, and orientation is challenging. Especially for microphotonics applications such as optical resonators and lasers, integrated optical devices, and sensors, a precise design of a micrometer-scale object is required. In this Account, we review the recent progress on precise control of microstructures from π-conjugated organic molecules and polymers, which work as micro-photoemitters and are suitable for optical applications.After the introduction on the importance of the control of the hierarchical structures from molecular assembly, we review supramolecular methodology for assembling molecules and supramolecules to form microstructures such as spheres and polygons with precisely controlled morphology and molecular orientations. The resultant microstructures act as anisotropic emitters of circularly polarized luminescence. We report that synchronous crystallization of π-conjugated chiral cyclophanes forms concave hexagonal pyramidal microcrystals with homogeneous size, morphology, and orientation, which clearly paves the way for the precise control of skeletal crystallization under kinetic control. Furthermore, we show microcavity functions of the self-assembled micro-objects. The self-assembled π-conjugated polymer microspheres work as whispering gallery mode (WGM) optical resonators, where the photoluminescence exhibits sharp and periodic emission lines. The spherical resonators with molecular functions act as long-distance photon energy transporters, convertors, and full-color microlasers. Fabrication of microarrays with photoswitchable WGM microresonators by the surface self-assembly technique realizes optical memory with physically unclonable functions of WGM fingerprints. All-optical logic operations are demonstrated by arranging the WGM microresonators on synthetic and natural optical fibers, where the photoswitchable WGM microresonators act as a gate for light propagation via a cavity-mediated energy transfer cascade. Meanwhile, the sharp WGM emission line is appropriate for utilization as optical sensors for monitoring the mode shift and mode splitting. The resonant peaks sensitively respond to humidity change, absorption of volatile organic compounds, microairflow, and polymer decomposition by utilizing structurally flexible polymers, microporous polymers, nonvolatile liquid droplets, and natural biopolymers as media of the resonators. We further construct microcrystals from π-conjugated molecules with rods and rhombic plates, which act as WGM laser resonators with light-harvesting function. Our developments, precise design and control of organic/polymeric microstructures, form a bridge between nanometer-scale supramolecular chemistry and bulk materials and pave the way toward flexible micro-optics applications.

摘要

用于光学和电子的超分子组装,从纳米到微米和毫米尺度的层次结构的控制是至关重要的。超分子化学控制分子间相互作用,使用自下而上的自组装过程构建尺寸从几纳米到几百纳米的分子组件。然而,将超分子方法扩展到几十微米的尺度以构建具有精确控制的尺寸、形态和取向的物体是具有挑战性的。特别是对于微光子学应用,如光学谐振器和激光、集成光学器件和传感器,需要对微米级物体进行精确设计。在本报告中,我们综述了用于光学应用的光发射微光子的π共轭有机分子和聚合物的微观结构的精确控制的最新进展。

在介绍从分子组装到控制层次结构的重要性之后,我们综述了用于组装分子和超分子以形成具有精确控制形态和分子取向的球体和多边形等微观结构的超分子方法。所得的微观结构作为圆偏振发光的各向异性发射器。我们报告说,π共轭手性环芳烃的同步结晶形成具有均匀尺寸、形态和取向的凹六方锥形微晶,这为在动力学控制下精确控制骨架结晶开辟了道路。此外,我们展示了自组装微物体的微腔功能。自组装的π共轭聚合物微球作为声子回音壁模式(WGM)光学谐振器,其中光致发光表现出尖锐和周期性的发射线。具有分子功能的球形谐振器作为远距离光子能量传输器、转换器和全彩微激光器。通过表面自组装技术制造具有光致变色 WGM 微谐振器的微阵列实现了具有 WGM 指纹的物理不可克隆功能的光学记忆。通过将 WGM 微谐振器排列在合成和天然光纤上,演示了全光逻辑运算,其中光致变色 WGM 微谐振器用作通过腔介导能量转移级联传播光的门。同时,尖锐的 WGM 发射线适合用作监测模式移动和模式分裂的光学传感器。通过使用结构灵活的聚合物、微孔聚合物、非挥发性液滴和天然生物聚合物作为谐振器的介质,谐振峰对湿度变化、挥发性有机化合物的吸收、微气流和聚合物分解敏感响应。我们进一步构建了由棒状和菱形板组成的π共轭分子的微晶体,它们作为具有光捕获功能的 WGM 激光谐振器。我们的发展,即有机/聚合物微观结构的精确设计和控制,在纳米级超分子化学和块状材料之间架起了桥梁,为柔性微光学应用铺平了道路。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验