Suppr超能文献

用于乳腺肿块检测的多级阈值处理

Multiple-level thresholding for breast mass detection.

作者信息

Yu Xiang, Wang Shui-Hua, Zhang Yu-Dong

机构信息

School of Computing and Mathematical Sciences, University of Leicester, Leicester LEI 7RH, United Kingdom.

出版信息

J King Saud Univ Comput Inf Sci. 2023 Jan;35(1):115-130. doi: 10.1016/j.jksuci.2022.11.006.

Abstract

Detection of breast mass plays a very important role in making the diagnosis of breast cancer. For faster detection of breast cancer caused by breast mass, we developed a novel and efficient patch-based breast mass detection system for mammography images. The proposed framework is comprised of three modules, including pre-processing, multiple-level breast tissue segmentation, and final breast mass detection. An improved Deeplabv3+ model for pectoral muscle removal is deployed in pre-processing. We then proposed a multiple-level thresholding segmentation method to segment breast mass and obtained the connected components (ConCs), where the corresponding image patch to each ConC is extracted for mass detection. In the final detection stage, each image patch is classified into breast mass and breast tissue background by trained deep learning models. The patches that are classified as breast mass are then taken as the candidates for breast mass. To reduce the false positive rate in the detection results, we applied the non-maximum suppression algorithm to combine the overlapped detection results. Once an image patch is considered a breast mass, the accurate detection result can then be retrieved from the corresponding ConC in the segmented images. Moreover, a coarse segmentation result can be simultaneously retrieved after detection. Compared to the state-of-the-art methods, the proposed method achieved comparable performance. On CBIS-DDSM, the proposed method achieved a detection sensitivity of 0.87 at 2.86 FPI (False Positive rate per Image), while the sensitivity reached 0.96 on INbreast with an FPI of only 1.29.

摘要

乳腺肿块的检测在乳腺癌诊断中起着非常重要的作用。为了更快地检测出由乳腺肿块引起的乳腺癌,我们开发了一种新颖且高效的基于补丁的乳腺钼靶图像肿块检测系统。所提出的框架由三个模块组成,包括预处理、多级乳腺组织分割和最终的乳腺肿块检测。在预处理中部署了一个改进的用于去除胸肌的Deeplabv3+模型。然后,我们提出了一种多级阈值分割方法来分割乳腺肿块并获得连通分量(ConCs),为肿块检测提取每个ConC对应的图像补丁。在最终检测阶段,通过训练的深度学习模型将每个图像补丁分类为乳腺肿块和乳腺组织背景。被分类为乳腺肿块的补丁随后被视为乳腺肿块的候选者。为了降低检测结果中的假阳性率,我们应用非极大值抑制算法来合并重叠的检测结果。一旦一个图像补丁被认为是乳腺肿块,就可以从分割图像中的相应ConC中检索到准确的检测结果。此外,检测后可以同时检索到一个粗略的分割结果。与现有方法相比,所提出的方法取得了相当的性能。在CBIS-DDSM上,所提出的方法在每幅图像2.86次误报率(FPI)的情况下实现了0.87的检测灵敏度,而在INbreast上灵敏度达到0.96,误报率仅为1.29。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验