School of Computer Science, Chengdu University, Chengdu, China.
Key Laboratory of Pattern Recognition and Intelligent Information Processing of Sichuan, Chengdu University, Chengdu, China.
Sci Rep. 2023 May 23;13(1):8316. doi: 10.1038/s41598-023-34640-8.
Hybrid nanofluid are the modified class of nanofluids with extra high thermal performances and present different applications in automotive cooling, heat transfer devices, solar collectors, engine applications, fusion processes, machine cutting, chemical processes etc. This thermal research explores the heat transfer assessment due to hybrid nanofluid with of different shape features. The thermal inspections regarding the hybrid nanofluid model are justified with aluminium oxide and titanium nanoparticles. The base liquid properties are disclosed with ethylene glycol material. The novel impact of current model is the presentation of different shape features namely Platelets, blade and cylinder. Different thermal properties of utilized nanoparticles at various flow constraints are reported. The problem of hybrid nanofluid model is modified in view of slip mechanism, magnetic force and viscous dissipation. The heat transfer observations for decomposition of TiO-AlO/CHO is assessed by using the convective boundary conditions. The shooting methodology is involved for finding the numerical observations of problem. Graphical impact of thermal parameters is observed for TiO-AlO/CHO hybrid decomposition. The pronounced observations reveal that thermal rate enhanced for blade shaped titanium oxide-ethylene glycol decomposition. The wall shear force reduces for blade shaped titanium oxide nanoparticles.
混合纳米流体是纳米流体的改良类,具有更高的热性能,在汽车冷却、传热装置、太阳能集热器、发动机应用、聚变过程、机械切割、化学过程等方面有不同的应用。这项热研究探讨了由于不同形状特征的混合纳米流体而产生的传热评估。混合纳米流体模型的热检测使用氧化铝和钛纳米粒子进行了验证。基础液体特性采用乙二醇材料进行了揭示。当前模型的新影响是提出了不同的形状特征,即薄片、叶片和圆柱体。报告了在各种流动限制下使用的纳米粒子的不同热性能。从滑动机制、磁力和粘性耗散的角度出发,对混合纳米流体模型的问题进行了修正。传热观察是通过使用对流边界条件对 TiO-AlO/CHO 的分解来评估的。拍摄方法用于找到问题的数值观察。观察到热参数的图形影响,用于 TiO-AlO/CHO 混合分解。明显的观察结果表明,叶片状钛氧化物-乙二醇分解的热速率增强。叶片状钛氧化物纳米粒子的壁剪切力减小。