Suppr超能文献

一种具有最近邻层次初始化的新型归一化割求解器。

A Novel Normalized-Cut Solver With Nearest Neighbor Hierarchical Initialization.

作者信息

Nie Feiping, Lu Jitao, Wu Danyang, Wang Rong, Li Xuelong

出版信息

IEEE Trans Pattern Anal Mach Intell. 2024 Jan;46(1):659-666. doi: 10.1109/TPAMI.2023.3279394. Epub 2023 Dec 5.

Abstract

Normalized-Cut (N-Cut) is a famous model of spectral clustering. The traditional N-Cut solvers are two-stage: 1) calculating the continuous spectral embedding of normalized Laplacian matrix; 2) discretization via K-means or spectral rotation. However, this paradigm brings two vital problems: 1) two-stage methods solve a relaxed version of the original problem, so they cannot obtain good solutions for the original N-Cut problem; 2) solving the relaxed problem requires eigenvalue decomposition, which has O(n) time complexity ( n is the number of nodes). To address the problems, we propose a novel N-Cut solver designed based on the famous coordinate descent method. Since the vanilla coordinate descent method also has O(n) time complexity, we design various accelerating strategies to reduce the time complexity to O(|E|) ( |E| is the number of edges). To avoid reliance on random initialization which brings uncertainties to clustering, we propose an efficient initialization method that gives deterministic outputs. Extensive experiments on several benchmark datasets demonstrate that the proposed solver can obtain larger objective values of N-Cut, meanwhile achieving better clustering performance compared to traditional solvers.

摘要

归一化割(Normalized-Cut,N-Cut)是一种著名的谱聚类模型。传统的N-Cut求解器分为两个阶段:1)计算归一化拉普拉斯矩阵的连续谱嵌入;2)通过K均值或谱旋转进行离散化。然而,这种范式带来了两个关键问题:1)两阶段方法解决的是原始问题的松弛版本,因此无法为原始的N-Cut问题获得良好的解决方案;2)解决松弛问题需要进行特征值分解,其时间复杂度为O(n)(n是节点数量)。为了解决这些问题,我们提出了一种基于著名的坐标下降法设计的新型N-Cut求解器。由于普通坐标下降法的时间复杂度也为O(n),我们设计了各种加速策略将时间复杂度降低到O(|E|)(|E|是边的数量)。为了避免依赖随机初始化给聚类带来不确定性,我们提出了一种能给出确定性输出的高效初始化方法。在多个基准数据集上进行的大量实验表明,所提出的求解器能够获得更大的N-Cut目标值,同时与传统求解器相比具有更好的聚类性能。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验