Environmental Studies Center (CEA), São Paulo State University (UNESP), Avenida 24-A, 1515, Rio Claro, SP, 13506-900, Brazil.
Environmental Studies Center (CEA), São Paulo State University (UNESP), Avenida 24-A, 1515, Rio Claro, SP, 13506-900, Brazil.
Anal Chim Acta. 2023 Jul 4;1263:341259. doi: 10.1016/j.aca.2023.341259. Epub 2023 Apr 24.
Recently, rare-earth elements (REEs) have attracted great interest due to their importance in several fields, such as the high-technology and medicine industries. Due to the recent intensification of the use of REEs in the world and the resulting potential impact on the environment, new analytical approaches for their determination, fractionation and speciation are needed. Diffusive gradients in thin films are a passive technique already used for sampling labile REEs, providing in situ analyte concentration, fractionation and, consequently, remarkable information on REE geochemistry. However, data based on DGT measurements until now have been based exclusively on the use of a single binding phase (Chelex-100, immobilized in APA gel). The present work proposes a new method for the determination of rare earth elements using an inductively coupled plasma‒mass spectrometry technique and a diffusive gradients in thin films (DGT) technique for application in aquatic environments. New binding gels were tested for DGT using carminic acid as the binding agent. It was concluded that acid dispersion directly in agarose gel presented the best performance, offering a simpler, faster, and greener method for measuring labile REEs compared to the existing DGT binding phase. Deployment curves obtained by immersion tests in the laboratory show that 13 REEs had linearity in their retention by the developed binding agent (retention x time), confirming the main premise of the DGT technique obeying the first Fick's diffusion law. For the first time, the diffusion coefficients were obtained in agarose gels (diffusion medium) and carminic acid immobilized in agarose as the binding phase for La, Ce, Pr, Nd, Sm, Eu, Gd, Dy, Ho, Er, Tm, Yb and Lu, which were 3.94 × 10, 3.87 × 10, 3.90 × 10 3.79 × 10, 3.71 × 10, 4.13 × 10, 3.75 × 10, 3.94 × 10, 3.45 × 10, 3.97 × 10, 3.25 × 10, 4.06 × 10, and 3.50 × 10 cm s, respectively. Furthermore, the proposed DGT devices were tested in solutions with different pH values (3.5, 5.0, 6.5 and 8) and ionic strengths (I = 0.005 mol L, 0.01 mol L, 0.05 mol L and 0.1 mol L - NaNO). The results of these studies showed an average variation in the analyte retention for all elements at a maximum of approximately 20% in the pH tests. This variation is considerably lower than those previously reported when using Chelex resin as a binding agent, particularly for lower pH values. For the ionic strength, the maximum average variation was approximately 20% for all elements (except for I = 0.005 mol L). These results indicate the possibility of a wide range of the proposed approach to be used for in situ deployment without the use of correction based on apparent diffusion coefficients (as required for using the conventional approach). In laboratory deployments using acid mine drainage water samples (treated and untreated), it was shown that the proposed approach presents excellent accuracy compared with data obtained from Chelex resin as a binding agent.
最近,由于在高科技和医药行业等领域的重要性,稀土元素 (REEs) 引起了极大的关注。由于世界范围内 REEs 的使用最近加剧,以及由此对环境产生的潜在影响,需要新的分析方法来确定、分离和形态分析它们。薄膜扩散梯度是一种已经用于采样生物可利用的 REEs 的被动技术,提供了原位分析物浓度、分离和因此对 REE 地球化学的重要信息。然而,到目前为止,基于 DGT 测量的数据仅基于使用单一结合相(Chelex-100,固定在 APA 凝胶中)。本工作提出了一种新的方法,使用电感耦合等离子体质谱技术和薄膜扩散梯度(DGT)技术测定稀土元素,用于水生环境。测试了新的结合凝胶,使用胭脂红酸作为结合剂用于 DGT。结果表明,酸直接分散在琼脂糖凝胶中表现出最佳性能,与现有的 DGT 结合相相比,提供了一种更简单、更快、更环保的测量生物可利用的 REEs 的方法。实验室浸泡试验获得的部署曲线表明,开发的结合剂对 13 种 REE 的保留具有线性(保留 x 时间),证实了 DGT 技术遵守第一菲克扩散定律的主要前提。首次获得了琼脂糖凝胶(扩散介质)和固定在琼脂糖中的胭脂红酸的扩散系数作为 La、Ce、Pr、Nd、Sm、Eu、Gd、Dy、Ho、Er、Tm、Yb 和 Lu 的结合相,分别为 3.94×10 、3.87×10 、3.90×10 、3.79×10 、3.71×10 、4.13×10 、3.75×10 、3.94×10 、3.45×10 、3.97×10 、3.25×10 、4.06×10 和 3.50×10 cm s。此外,还在不同 pH 值(3.5、5.0、6.5 和 8)和离子强度(I = 0.005 mol L 、0.01 mol L 、0.05 mol L 和 0.1 mol L - NaNO )的溶液中测试了所提出的 DGT 装置。这些研究的结果表明,对于所有元素,在 pH 测试中,分析物保留的平均变化最大约为 20%。与使用 Chelex 树脂作为结合剂时报告的结果相比,这种变化低得多,特别是对于较低的 pH 值。对于离子强度,所有元素的平均最大变化约为 20%(除了 I = 0.005 mol L )。这些结果表明,所提出的方法可以在无需使用表观扩散系数进行校正的情况下(如使用传统方法所需),广泛应用于原位部署。在使用酸性矿山排水水样(处理和未处理)的实验室部署中,与使用 Chelex 树脂作为结合剂获得的数据相比,该方法表现出优异的准确性。