Suppr超能文献

BMP4 信号通路的破坏与小鼠模型中的喉出生缺陷有关。

Disruption of BMP4 signaling is associated with laryngeal birth defects in a mouse model.

机构信息

Neonatology and Pulmonary Biology, Perinatal Institute Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA.

Neonatology and Pulmonary Biology, Perinatal Institute Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA; College of Medicine, University of Cincinnati, Cincinnati, OH, USA.

出版信息

Dev Biol. 2023 Aug;500:10-21. doi: 10.1016/j.ydbio.2023.04.007. Epub 2023 May 23.

Abstract

Laryngeal birth defects are considered rare, but they can be life-threatening conditions. The BMP4 gene plays an important role in organ development and tissue remodeling throughout life. Here we examined its role in laryngeal development complementing similar efforts for the lung, pharynx, and cranial base. Our goal was to determine how different imaging techniques contribute to a better understanding of the embryonic anatomy of the normal and diseased larynx in small specimens. Contrast-enhanced micro CT images of embryonic larynx tissue from a mouse model with Bmp4 deletion informed by histology and whole-mount immunofluorescence were used to reconstruct the laryngeal cartilaginous framework in three dimensions. Laryngeal defects included laryngeal cleft, laryngeal asymmetry, ankylosis and atresia. Results implicate BMP4 in laryngeal development and show that the 3D reconstruction of laryngeal elements provides a powerful approach to visualize laryngeal defects and thereby overcoming shortcomings of 2D histological sectioning and whole mount immunofluorescence.

摘要

喉部出生缺陷被认为是罕见的,但它们可能是危及生命的情况。BMP4 基因在整个生命过程中的器官发育和组织重塑中起着重要作用。在这里,我们研究了其在喉发育中的作用,补充了对肺、咽和颅底的类似研究。我们的目标是确定不同的成像技术如何有助于更好地理解正常和患病小标本喉的胚胎解剖结构。通过组织学和全胚胎免疫荧光检查,对 Bmp4 缺失的小鼠模型胚胎喉组织进行了对比增强微 CT 成像,以三维方式重建喉软骨框架。喉部缺陷包括喉裂、喉不对称、黏连和闭锁。结果表明 BMP4 参与了喉的发育,并表明喉部元素的三维重建为可视化喉部缺陷提供了一种强大的方法,从而克服了 2D 组织学切片和全胚胎免疫荧光的缺点。

相似文献

1
Disruption of BMP4 signaling is associated with laryngeal birth defects in a mouse model.
Dev Biol. 2023 Aug;500:10-21. doi: 10.1016/j.ydbio.2023.04.007. Epub 2023 May 23.
3
The fetal larynx and pharynx: structure and development on two- and three-dimensional ultrasound.
Ultrasound Obstet Gynecol. 2013 Aug;42(2):140-8. doi: 10.1002/uog.12358. Epub 2013 Jul 16.
4
Sensory regulation of swallowing and airway protection: a role for the internal superior laryngeal nerve in humans.
J Physiol. 2003 Jul 1;550(Pt 1):287-304. doi: 10.1113/jphysiol.2003.039966. Epub 2003 May 16.
5
[Anatomy of the glottis and subglottis in the pediatric larynx].
HNO. 2000 Jul;48(7):501-7. doi: 10.1007/s001060050606.
6
Characterization of the larynx in ephrin-B2 knockout mice: a novel animal model for laryngeal clefts.
Arch Otolaryngol Head Neck Surg. 2012 Oct;138(10):969-72. doi: 10.1001/archotol.2013.109.
9
Fibroblast growth factor 18 gives growth and directional cues to airway cartilage.
Laryngoscope. 2009 Jun;119(6):1153-65. doi: 10.1002/lary.20157.
10

引用本文的文献

1
Advancements in Genetic Marker Exploration for Livestock Vertebral Traits with a Focus on China.
Animals (Basel). 2024 Feb 11;14(4):594. doi: 10.3390/ani14040594.

本文引用的文献

1
ALDH1A2-related disorder: A new genetic syndrome due to alteration of the retinoic acid pathway.
Am J Med Genet A. 2023 Jan;191(1):90-99. doi: 10.1002/ajmg.a.62991. Epub 2022 Oct 19.
2
Transcriptome Dynamics in the Developing Larynx, Trachea, and Esophagus.
Front Cell Dev Biol. 2022 Jul 22;10:942622. doi: 10.3389/fcell.2022.942622. eCollection 2022.
3
BMP4 and Wnt signaling interact to promote mouse tracheal mesenchyme morphogenesis.
Am J Physiol Lung Cell Mol Physiol. 2022 Feb 1;322(2):L224-L242. doi: 10.1152/ajplung.00255.2021. Epub 2021 Dec 1.
4
Multidisciplinary management of a neonate in respiratory distress with undiagnosed type IV laryngeal cleft.
J Clin Anesth. 2022 Feb;76:110564. doi: 10.1016/j.jclinane.2021.110564. Epub 2021 Oct 22.
5
Laryngomalacia in the Premature Neonate.
Neoreviews. 2021 Oct;22(10):e653-e659. doi: 10.1542/neo.22-10-e653.
6
Knockdown in a Family with Multiple Synostosis Syndrome and Speech Impairment.
Genes (Basel). 2021 Aug 29;12(9):1354. doi: 10.3390/genes12091354.
7
New cases that expand the genotypic and phenotypic spectrum of Congenital NAD Deficiency Disorder.
Hum Mutat. 2021 Jul;42(7):862-876. doi: 10.1002/humu.24211. Epub 2021 May 16.
8
Bardet-Biedl syndrome presenting with laryngeal web and bifid epiglottis.
BMJ Case Rep. 2021 Jan 28;14(1):e236325. doi: 10.1136/bcr-2020-236325.
9
Characterization of intrauterine growth, proliferation and biomechanical properties of the murine larynx.
PLoS One. 2021 Jan 13;16(1):e0245073. doi: 10.1371/journal.pone.0245073. eCollection 2021.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验