Bacterial Toxin Research Innovation Laboratory, Institute of Molecular Biosciences, Mahidol University, Salaya Campus, Nakornpathom, 73170, Thailand.
Laboratory of Cell Chemical Biology, Biophysics Institute for Research and Development (BIRD), Chiang Mai, 50110, Thailand.
Biochem Biophys Res Commun. 2023 Aug 6;668:111-117. doi: 10.1016/j.bbrc.2023.05.085. Epub 2023 May 23.
Lysostaphin endopeptidase cleaves pentaglycine cross-bridges found in staphylococcal cell-wall peptidoglycans and proves very effective in combatting methicillin-resistant Staphylococcus aureus. Here, we revealed the functional importance of two loop residues, Tyr in loop 1 and Asn in loop 4, which are highly conserved among the M23 endopeptidase family and are found close to the Zn-coordinating active site. Detailed analyses of the binding groove architecture together with protein-ligand docking showed that these two loop residues potentially interact with the docked ligand-pentaglycine. Ala-substituted mutants (Y270A and N372A) were generated and over-expressed in Escherichia coli as a soluble form at levels comparable to the wild type. A drastic decrease in staphylolytic activity against S. aureus was observed for both mutants, suggesting an essential role of the two loop residues in lysostaphin function. Further substitutions with an uncharged polar Gln side-chain revealed that only the Y270Q mutation caused a dramatic reduction in bioactivity. In silico predicting the effect of binding site mutations revealed that all mutations displayed a large ΔΔG value, signifying requirements of the two loop residues for efficient binding to pentaglycine. Additionally, MD simulations revealed that Y270A and Y270Q mutations induced large flexibility of the loop 1 region, showing markedly increased RMSF values. Further structural analysis suggested that Tyr conceivably participated in the oxyanion stabilization of the enzyme catalysis. Altogether, our present study disclosed that two highly conserved loop residues, loop 1-Tyr and loop 4-Asn, located near the lysostaphin active site are crucially involved in staphylolytic activity toward binding and catalysis of pentaglycine cross-links.
溶葡萄球菌素内切酶可裂解葡萄球菌细胞壁肽聚糖中的五肽交联桥,对耐甲氧西林金黄色葡萄球菌(MRSA)非常有效。在这里,我们揭示了两个Loop 残基(Loop 1 中的 Tyr 和 Loop 4 中的 Asn)的功能重要性,这两个残基在 M23 内切酶家族中高度保守,且靠近 Zn 配位的活性位点。详细的结合槽结构分析和蛋白-配体对接表明,这两个Loop 残基可能与结合的配体-五肽相互作用。生成了 Tyr270A 和 Asn372A 两种 Ala 取代突变体,并在大肠杆菌中以可溶形式过表达,水平与野生型相当。两种突变体对金黄色葡萄球菌的溶菌活性均显著降低,表明这两个Loop 残基在溶葡萄球菌素功能中起关键作用。进一步用不带电荷的极性 Gln 侧链取代表明,只有 Y270Q 突变导致生物活性显著降低。计算预测结合位点突变的影响表明,所有突变均显示出较大的ΔΔG 值,表明这两个Loop 残基对与五肽有效结合的要求。此外,MD 模拟表明,Y270A 和 Y270Q 突变诱导 Loop 1 区域的较大灵活性,显示出明显增加的 RMSF 值。进一步的结构分析表明,Tyr 可能参与了酶催化的氧阴离子稳定。总之,我们的研究表明,位于溶葡萄球菌素活性位点附近的两个高度保守的Loop 残基(Loop 1-Tyr 和 Loop 4-Asn)对五肽交联的结合和催化至关重要,参与了溶葡萄球菌素的溶菌活性。