Department of Environmental Science, Policy, and Management, University of California, Berkeley, CA 94720, USA.
School of Engineering and Applied Sciences, Harvard University, Cambridge, MA 02138, USA.
Philos Trans R Soc Lond B Biol Sci. 2023 Jul 17;378(1881):20220195. doi: 10.1098/rstb.2022.0195. Epub 2023 May 29.
From out-competing grandmasters in chess to informing high-stakes healthcare decisions, emerging methods from artificial intelligence are increasingly capable of making complex and strategic decisions in diverse, high-dimensional and uncertain situations. But can these methods help us devise robust strategies for managing environmental systems under great uncertainty? Here we explore how reinforcement learning (RL), a subfield of artificial intelligence, approaches decision problems through a lens similar to adaptive environmental management: learning through experience to gradually improve decisions with updated knowledge. We review where RL holds promise for improving evidence-informed adaptive management decisions even when classical optimization methods are intractable and discuss technical and social issues that arise when applying RL to adaptive management problems in the environmental domain. Our synthesis suggests that environmental management and computer science can learn from one another about the practices, promises and perils of experience-based decision-making. This article is part of the theme issue 'Detecting and attributing the causes of biodiversity change: needs, gaps and solutions'.
从在国际象棋中击败大师级选手,到为高风险的医疗保健决策提供信息,人工智能领域涌现出的新方法在复杂、战略和多样化、高维以及不确定的情况下,越来越能够做出决策。但是,这些方法是否可以帮助我们制定在巨大不确定性下管理环境系统的稳健策略?在这里,我们通过与自适应环境管理类似的视角来探索强化学习(RL)——人工智能的一个分支——是如何通过经验来解决决策问题的:通过经验学习,随着知识的更新逐渐改进决策。我们回顾了 RL 在改进基于证据的自适应管理决策方面的应用前景,即使在经典优化方法难以处理的情况下,以及在将 RL 应用于环境领域的自适应管理问题时出现的技术和社会问题。我们的综述表明,环境管理和计算机科学可以相互学习基于经验的决策制定的实践、前景和风险。本文是主题为“检测和归因生物多样性变化的原因:需求、差距和解决方案”的一部分。