Suppr超能文献

肌钙蛋白 I 诱导原肌球蛋白旋转定义了肌肉松弛和活跃时的细肌丝功能。

Troponin-I-induced tropomyosin pivoting defines thin-filament function in relaxed and active muscle.

机构信息

Department of Pharmacology, Physiology and Biophysics, Boston University Chobanian and Avedisian School of Medicine, Boston, MA, USA.

出版信息

J Gen Physiol. 2023 Jul 3;155(7). doi: 10.1085/jgp.202313387. Epub 2023 May 30.

Abstract

Regulation of the crossbridge cycle that drives muscle contraction involves a reconfiguration of the troponin-tropomyosin complex on actin filaments. By comparing atomic models of troponin-tropomyosin fitted to cryo-EM structures of inhibited and Ca2+-activated thin filaments, we find that tropomyosin pivots rather than rolls or slides across actin as generally thought. We propose that pivoting can account for the Ca2+ activation that initiates muscle contraction and then relaxation influenced by troponin-I (TnI). Tropomyosin is well-known to occupy either of three meta-stable configurations on actin, regulating access of myosin motorheads to their actin-binding sites and thus the crossbridge cycle. At low Ca2+ concentrations, tropomyosin is trapped by TnI in an inhibitory B-state that sterically blocks myosin binding to actin, leading to muscle relaxation. Ca2+ binding to TnC draws TnI away from tropomyosin, while tropomyosin moves to a C-state location over actin. This partially relieves the steric inhibition and allows weak binding of myosin heads to actin, which then transition to strong actin-bound configurations, fully activating the thin filament. Nevertheless, the reconfiguration that accompanies the initial Ca2+-sensitive B-state/C-state shift in troponin-tropomyosin on actin remains uncertain and at best is described by moderate-resolution cryo-EM reconstructions. Our recent computational studies indicate that intermolecular residue-to-residue salt-bridge linkage between actin and tropomyosin is indistinguishable in B- and C-state thin filament configurations. We show here that tropomyosin can pivot about relatively fixed points on actin to accompany B-state/C-state structural transitions. We argue that at low Ca2+ concentrations C-terminal TnI domains attract tropomyosin, causing it to bend and then pivot toward the TnI, thus blocking myosin binding and contraction.

摘要

肌球蛋白收缩的横桥循环的调节涉及到肌钙蛋白-原肌球蛋白复合物在肌动蛋白丝上的重新配置。通过比较与抑制和 Ca2+激活的细肌丝的冷冻电镜结构适配的肌钙蛋白-原肌球蛋白的原子模型,我们发现肌球蛋白原肌球蛋白不是像通常认为的那样在肌动蛋白上滚动或滑动,而是枢轴转动。我们提出,枢轴转动可以解释 Ca2+的激活,Ca2+的激活引发肌肉收缩,然后再由肌钙蛋白 I(TnI)影响肌肉松弛。众所周知,肌球蛋白原肌球蛋白可以占据肌动蛋白上的三个亚稳定构象中的任意一个,调节肌球蛋白马达头与肌动蛋白结合位点的接触,从而调节横桥循环。在低 Ca2+浓度下,肌钙蛋白 I 将肌球蛋白原肌球蛋白锁定在抑制性 B 态,阻止肌球蛋白与肌动蛋白结合,导致肌肉松弛。肌钙蛋白 C 与 Ca2+结合将肌钙蛋白 I 从肌球蛋白原肌球蛋白上拉开,而肌球蛋白原肌球蛋白在肌动蛋白上移动到 C 态位置。这部分解除了空间位阻抑制,并允许肌球蛋白头部与肌动蛋白弱结合,然后过渡到与肌动蛋白强结合的构象,从而完全激活细肌丝。然而,与肌钙蛋白-原肌球蛋白在肌动蛋白上的初始 Ca2+敏感的 B 态/C 态转变伴随的构象重排仍然不确定,最好通过适度分辨率的冷冻电镜重建来描述。我们最近的计算研究表明,肌动蛋白和肌球蛋白原肌球蛋白之间的分子间残基-残基盐桥连接在 B 态和 C 态细肌丝构象中是无法区分的。我们在这里表明,肌球蛋白原肌球蛋白可以围绕肌动蛋白上的相对固定点枢轴转动,以伴随 B 态/C 态结构转变。我们认为,在低 Ca2+浓度下,C 端肌钙蛋白 I 结构域吸引肌球蛋白原肌球蛋白,导致其弯曲然后枢轴转动到肌钙蛋白 I ,从而阻止肌球蛋白结合和收缩。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/cd72/10227645/ad7aa033febc/JGP_202313387_Fig1.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验