Suppr超能文献

氧化老化对石墨烯-沥青纳米复合材料界面的劣化效应:多尺度建模。

Deterioration Effects of Oxidative Aging on Graphene-Asphalt Nanocomposite Interfaces: Multiscale Modeling.

机构信息

School of Transportation Science & Engineering, Harbin Institute of Technology, Harbin 150090, P. R. China.

College of Civil Engineering, Department of Structural Engineering, Tongji University, Shanghai 200092, P. R. China.

出版信息

Langmuir. 2023 Jun 13;39(23):8339-8353. doi: 10.1021/acs.langmuir.3c00917. Epub 2023 May 30.

Abstract

The purpose of this study is to explore the mechanism of interfacial degradation of graphene-asphalt nanocomposites by oxidative aging and to explain the principle of reduced cracking resistance. In this study, density functional theory (DFT), molecular dynamics (MD) simulation, atomic force microscopy (AFM), Fourier transform infrared (FTIR) spectroscopy, and linear amplitude scanning test (LAS) were used to quantify the effect of oxidative aging on the interfacial degradation of graphene-asphalt nanocomposites with different scales, and the coupling mechanism between scales was systematically analyzed. The results show that interfacial degradation is a complex multiscale coupling behavior. Oxidative aging reduced the fatigue life () of graphene-asphalt nanocomposites by 8.6% due to a 63.9% reduction in shear barriers and a 14.2% reduction in energy barriers at the molecular interface. Furthermore, oxidative aging enhanced the intermolecular interactions and compatibility of the graphene-asphalt molecules. The interfacial interaction of aged graphene-asphalt nanocomposites is mainly van der Waals force. Graphene-aged aromatics and graphene-aged saturates were the most compatible interfaces, and there was typical benzene ring stacking between graphene and aged aromatic 2. Aged aromatics and aged saturates are the main promoters of interfacial strength and stress transfer, while aged asphaltenes and aged resins sometimes play a weakening role, as verified by the AFM. In addition, DFT calculations show that there is no chemical reaction between graphene and aged asphalt molecules, which is consistent with the FTIR results. This study provides a theoretical basis for the development of targeted antiaging and anticracking technologies for asphalt-based materials.

摘要

本研究旨在探讨氧化老化对石墨烯-沥青纳米复合材料界面降解的机制,并解释其抗裂性能降低的原理。本研究采用密度泛函理论(DFT)、分子动力学(MD)模拟、原子力显微镜(AFM)、傅里叶变换红外(FTIR)光谱和线性振幅扫描测试(LAS),定量研究了氧化老化对不同尺度石墨烯-沥青纳米复合材料界面降解的影响,并系统分析了尺度间的耦合机制。结果表明,界面降解是一种复杂的多尺度耦合行为。氧化老化使石墨烯-沥青纳米复合材料的疲劳寿命()降低了 8.6%,这是由于分子界面的剪切势垒降低了 63.9%,能量势垒降低了 14.2%。此外,氧化老化增强了石墨烯-沥青分子间的相互作用和相容性。老化石墨烯-沥青纳米复合材料的界面相互作用主要是范德华力。老化的芳烃和老化的饱和物与石墨烯的界面相互作用最匹配,并且在石墨烯和老化的芳烃 2 之间存在典型的苯环堆积。老化的芳烃和老化的饱和物是增强界面强度和传递应力的主要促进剂,而老化的沥青质和老化的树脂有时则起到削弱作用,这可以通过 AFM 得到验证。此外,DFT 计算表明,石墨烯与老化的沥青分子之间没有化学反应,这与 FTIR 结果一致。本研究为开发针对沥青基材料的靶向抗老化和抗裂技术提供了理论依据。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验