Faculty of Health Sciences, University of Macau, Avenida da Universidade, Taipa, Macau, SAR 999078, China.
Centre for Cognitive and Brain Sciences, University of Macau, Avenida da Universidade, Taipa, Macau, SAR 999078, China.
Commun Biol. 2023 May 31;6(1):581. doi: 10.1038/s42003-023-04952-6.
To date, reliable biomarkers remain unclear that could link functional connectivity to patients' symptoms for detecting and predicting the process from normal aging to Alzheimer's disease (AD) in elderly people with specific genotypes. To address this, individual-specific functional connectivity is constructed for elderly participants with/without APOE ε4 allele. Then, we utilize recursive feature selection-based machine learning to reveal individual brain-behavior relationships and to predict the symptom transition in different genotypes. Our findings reveal that compared with conventional atlas-based functional connectivity, individual-specific functional connectivity exhibits higher classification and prediction performance from normal aging to AD in both APOE ε4 groups, while no significant performance is detected when the data of two genotyping groups are combined. Furthermore, individual-specific between-network connectivity constitutes a major contributor to assessing cognitive symptoms. This study highlights the essential role of individual variation in cortical functional anatomy and the integration of brain and behavior in predicting individualized symptoms.
迄今为止,尚缺乏能够将功能连接与患者症状联系起来的可靠生物标志物,以用于检测和预测具有特定基因型的老年人从正常衰老向阿尔茨海默病(AD)的进程。为了解决这个问题,我们为携带/不携带 APOE ε4 等位基因的老年参与者构建了特定于个体的功能连接。然后,我们利用基于递归特征选择的机器学习来揭示个体的大脑-行为关系,并预测不同基因型中的症状转变。我们的研究结果表明,与传统的基于图谱的功能连接相比,特定于个体的功能连接在 APOE ε4 组中均表现出更高的从正常衰老到 AD 的分类和预测性能,而当将两个基因分型组的数据合并时,并未检测到显著的性能。此外,特定于个体的网络间连接构成了评估认知症状的主要因素。这项研究强调了个体在皮质功能解剖和脑与行为整合方面的差异在预测个体症状中的重要作用。