Institute for Atmospheric and Climate Science, ETH Zurich, Zurich, Switzerland.
Laboratoire des Sciences du Climat et de l'Environnement, CEA-CNRS-UVSQ, Université Paris Saclay, Gif-sur-Yvette, France.
Nature. 2023 Jun;618(7966):755-760. doi: 10.1038/s41586-023-06056-x. Epub 2023 May 31.
Terrestrial ecosystems have taken up about 32% of the total anthropogenic CO emissions in the past six decades. Large uncertainties in terrestrial carbon-climate feedbacks, however, make it difficult to predict how the land carbon sink will respond to future climate change. Interannual variations in the atmospheric CO growth rate (CGR) are dominated by land-atmosphere carbon fluxes in the tropics, providing an opportunity to explore land carbon-climate interactions. It is thought that variations in CGR are largely controlled by temperature but there is also evidence for a tight coupling between water availability and CGR. Here, we use a record of global atmospheric CO, terrestrial water storage and precipitation data to investigate changes in the interannual relationship between tropical land climate conditions and CGR under a changing climate. We find that the interannual relationship between tropical water availability and CGR became increasingly negative during 1989-2018 compared to 1960-1989. This could be related to spatiotemporal changes in tropical water availability anomalies driven by shifts in El Niño/Southern Oscillation teleconnections, including declining spatial compensatory water effects. We also demonstrate that most state-of-the-art coupled Earth System and Land Surface models do not reproduce the intensifying water-carbon coupling. Our results indicate that tropical water availability is increasingly controlling the interannual variability of the terrestrial carbon cycle and modulating tropical terrestrial carbon-climate feedbacks.
在过去的六十年中,陆地生态系统吸收了人为 CO2 排放总量的约 32%。然而,陆地碳-气候反馈存在很大的不确定性,这使得难以预测陆地碳汇将如何应对未来的气候变化。大气 CO2 增长率(CGR)的年际变化主要由热带地区的陆地-大气碳通量控制,为探索陆地碳-气候相互作用提供了机会。人们认为 CGR 的变化主要受温度控制,但也有证据表明水可用性与 CGR 之间存在紧密耦合。在这里,我们使用全球大气 CO2、陆地水储量和降水数据的记录,研究在气候变化下,热带陆地气候条件与 CGR 之间的年际关系变化。我们发现,与 1960-1989 年相比,1989-2018 年期间,热带水可用性与 CGR 之间的年际关系变得更加负相关。这可能与厄尔尼诺/南方涛动遥相关变化驱动的热带水可用性异常的时空变化有关,包括空间补偿水效应的下降。我们还表明,大多数最先进的地球系统和陆面模型都无法再现水-碳耦合的增强。我们的结果表明,热带水可用性正越来越控制陆地碳循环的年际可变性,并调节热带陆地碳-气候反馈。