Suppr超能文献

在金属/介质图案上进行的选区原子层沉积:两亲性涂层、可挥发抑制剂和再生处理。

Area-Selective Atomic Layer Deposition on Metal/Dielectric Patterns: Amphiphobic Coating, Vaporizable Inhibitors, and Regenerative Processing.

机构信息

Department of Applied Chemistry, National Yang Ming Chiao Tung University, Hsinchu 300093, Taiwan.

Center for Emergent Functional Matter Science, National Yang Ming Chiao Tung University, Hsinchu 300093, Taiwan.

出版信息

ACS Appl Mater Interfaces. 2023 Jun 14;15(23):28817-28824. doi: 10.1021/acsami.3c03752. Epub 2023 Jun 2.

Abstract

Area-selective atomic layer deposition (AS-ALD) has drawn significant attention in the past decade because of the potential applications in bottom-up processing, which enables fabricating nanostructures at the atomic level without multiple patterning and lithographic processing that could easily cause alignment issues. Although AS-ALD has been demonstrated using various self-assembled monolayers (SAMs), it is still challenging to develop wet SAM deposition for AS-ALD that is suitable for industrial and semiconductor processes. In this work, we demonstrate highly effective AS-ALD of AlO on Co/SiO patterned wafers using fluorinated thiol in both solution and vapor phase. Compared with conventional SAMs using alky-thiols, the fluorinated-thiol SAMs demonstrate greater blocking ability against ALD precursors owing to excellent hydrophobicity. Furthermore, much shorter deposition times can be achieved in vaporizable fluorinated thiol molecules, improving processing throughput and productivity. Most importantly, the SAM regeneration and redosing processes can further enhance the selectivity of AS-ALD, opening a promising avenue to realize the bottom-up approach in practical semiconductor applications.

摘要

区域选择性原子层沉积(AS-ALD)在过去十年中引起了极大的关注,因为它在自下而上的处理中有潜在的应用,能够在原子水平上制造纳米结构,而无需多次构图和光刻处理,这些处理很容易导致对准问题。尽管已经使用各种自组装单层(SAM)演示了 AS-ALD,但仍然难以开发适合工业和半导体工艺的湿 SAM 沉积 AS-ALD。在这项工作中,我们使用氟代硫醇在溶液和气相中展示了在 Co/SiO 图案化晶圆上的高效 AS-ALD 的 AlO。与使用烷硫醇的传统 SAM 相比,由于出色的疏水性,氟代硫醇 SAM 对 ALD 前体表现出更大的阻挡能力。此外,在可汽化的氟代硫醇分子中可以实现更短的沉积时间,从而提高处理吞吐量和生产率。最重要的是,SAM 再生和重新进样过程可以进一步提高 AS-ALD 的选择性,为在实际半导体应用中实现自下而上的方法开辟了一条有前途的途径。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验