Kimia Lab, University of Waterloo, Waterloo, ON, Canada.
Kimia Lab, University of Waterloo, Waterloo, ON, Canada; Rhazes Lab, Artificial Intelligence & Informatics, Mayo Clinic, Rochester, MN, USA.
Comput Biol Med. 2023 Aug;162:107026. doi: 10.1016/j.compbiomed.2023.107026. Epub 2023 May 22.
Considering their gigapixel sizes, the representation of whole slide images (WSIs) for classification and retrieval systems is a non-trivial task. Patch processing and multi-Instance Learning (MIL) are common approaches to analyze WSIs. However, in end-to-end training, these methods require high GPU memory consumption due to the simultaneous processing of multiple sets of patches. Furthermore, compact WSI representations through binary and/or sparse representations are urgently needed for real-time image retrieval within large medical archives. To address these challenges, we propose a novel framework for learning compact WSI representations utilizing deep conditional generative modeling and the Fisher Vector Theory. The training of our method is instance-based, achieving better memory and computational efficiency during the training. To achieve efficient large-scale WSI search, we introduce new loss functions, namely gradient sparsity and gradient quantization losses, for learning sparse and binary permutation-invariant WSI representations called Conditioned Sparse Fisher Vector (C-Deep-SFV), and Conditioned Binary Fisher Vector (C-Deep-BFV). The learned WSI representations are validated on the largest public WSI archive, The Cancer Genomic Atlas (TCGA) and also Liver-Kidney-Stomach (LKS) dataset. For WSI search, the proposed method outperforms Yottixel and Gaussian Mixture Model (GMM)-based Fisher Vector both in terms of retrieval accuracy and speed. For WSI classification, we achieve competitive performance against state-of-art on lung cancer data from TCGA and the public benchmark LKS dataset.
考虑到它们的千兆像素大小,用于分类和检索系统的全幻灯片图像 (WSI) 的表示是一项艰巨的任务。 补丁处理和多实例学习 (MIL) 是分析 WSI 的常用方法。 然而,在端到端训练中,由于同时处理多组补丁,这些方法需要高 GPU 内存消耗。 此外,对于在大型医学档案中进行实时图像检索,迫切需要通过二进制和/或稀疏表示来实现紧凑的 WSI 表示。 为了解决这些挑战,我们提出了一种利用深度条件生成模型和 Fisher 向量理论学习紧凑 WSI 表示的新框架。 我们的方法的训练是基于实例的,在训练过程中实现了更好的内存和计算效率。 为了实现高效的大规模 WSI 搜索,我们引入了新的损失函数,即梯度稀疏性和梯度量化损失,用于学习稀疏和二进制置换不变的 WSI 表示,称为条件稀疏 Fisher 向量 (C-Deep-SFV) 和条件二进制 Fisher 向量 (C-Deep-BFV)。 在最大的公共 WSI 档案 The Cancer Genomic Atlas (TCGA) 和 Liver-Kidney-Stomach (LKS) 数据集上验证了所提出的 WSI 表示。 对于 WSI 搜索,与 Yottixel 和基于高斯混合模型 (GMM) 的 Fisher 向量相比,所提出的方法在检索准确性和速度方面都表现出色。 对于 WSI 分类,我们在来自 TCGA 的肺癌数据和公共基准 LKS 数据集上的最新技术上实现了有竞争力的性能。