Pinto Rui M R, Nemala Siva Sankar, Faraji Mohammadmahdi, Fernandes Joao, Ponte Clara, De Bellis Giovanni, Retolaza Aritz, Vinayakumar K B, Capasso Andrea
International Iberian Nanotechnology Laboratory, Braga, Portugal.
Department of Astronautical, Electrical and Energy Engineering, Sapienza University of Rome, Rome, Italy.
Nanotechnology. 2023 Jun 23;34(36). doi: 10.1088/1361-6528/acdad7.
As an additive manufacturing process, material jetting techniques allow to selectively deposit droplets of materials in liquid or powder form through a small-diameter aperture, such as a nozzle of a print head. For the fabrication of printed electronics, a variety of inks and dispersions of functional materials can be deposited by drop-on-demand printing on rigid and flexible substrates. In this work, zero-dimensional multi-layer shell-structured fullerene material, also known as carbon nano-onion (CNO) or onion-like carbon, is printed on polyethylene terephthalate substrates using drop-on-demand inkjet printing. CNOs are produced using a low-cost flame synthesis technique and characterized by electron microscopy, Raman, x-ray photoelectron spectroscopy, and specific surface area and pore size measurements. The produced CNO material has an average diameter of ∼33 nm, pore diameter in the range ∼2-40 nm and a specific surface area of 160 m.g. The CNO dispersions in ethanol have a reduced viscosity (∼1.2 mPa.s) and are compatible with commercial piezoelectric inkjet heads. The jetting parameters are optimized to avoid satellite drops and to obtain a reduced drop volume (52 pL), resulting in optimal resolution (220m) and line continuity. A multi-step process is implemented without inter-layer curing and a fine control over the CNO layer thickness is achieved (∼180 nm thick layer after 10 printing passes). The printed CNO structures show an electrical resistivity of ∼600 Ω.m, a high negative temperature coefficient of resistance (-4.35 × 10°C) and a marked dependency on relative humidity (-1.29 × 10RH). The high sensitivity to temperature and humidity, combined to the large specific area of the CNOs, make this material and the corresponding ink a viable prospect for inkjet-printed technologies, such as environmental and gas sensors.
作为一种增材制造工艺,材料喷射技术可通过小直径孔径(如打印头的喷嘴)选择性地沉积液体或粉末形式的材料液滴。对于印刷电子产品的制造,可以通过按需滴墨印刷将各种功能材料的墨水和分散体沉积在刚性和柔性基板上。在这项工作中,使用按需滴墨喷墨印刷将零维多层壳结构富勒烯材料(也称为碳纳米洋葱(CNO)或类洋葱碳)印刷在聚对苯二甲酸乙二酯基板上。CNO通过低成本火焰合成技术生产,并通过电子显微镜、拉曼光谱、X射线光电子能谱以及比表面积和孔径测量进行表征。所生产的CNO材料平均直径约为33nm,孔径范围为2至40nm,比表面积为160m²/g。CNO在乙醇中的分散体具有降低的粘度(约1.2mPa·s),并且与商用压电喷墨头兼容。优化喷射参数以避免产生卫星液滴并获得减小的液滴体积(52pL),从而实现最佳分辨率(220μm)和线条连续性。实施了多步骤工艺,无需层间固化,并实现了对CNO层厚度的精细控制(10次印刷后约180nm厚的层)。印刷的CNO结构显示出约600Ω·m的电阻率、高负电阻温度系数(-4.35×10⁻²/°C)以及对相对湿度的显著依赖性(-1.29×10⁻³/RH)。对温度和湿度的高灵敏度,结合CNO的大比表面积,使这种材料和相应的墨水成为喷墨印刷技术(如环境和气体传感器)的可行选择。