Suppr超能文献

分析短信语言特征:患有抑郁症的人与亲密和非亲密联系人的沟通方式是否不同?

Analyzing text message linguistic features: Do people with depression communicate differently with their close and non-close contacts?

机构信息

Department of Preventive Medicine, Center for Behavioral Intervention Technologies (CBITs), Feinberg School of Medicine, Northwestern University, Chicago, IL, USA.

Positive Psychology Center, University of Pennsylvania, Philadelphia, PA, USA; Technology & Translational Research Unit, National Institute on Drug Abuse (NIDA IRP), National Institutes of Health (NIH), Baltimore, MD, USA.

出版信息

Behav Res Ther. 2023 Jul;166:104342. doi: 10.1016/j.brat.2023.104342. Epub 2023 May 27.

Abstract

BACKGROUND

Relatively little is known about how communication changes as a function of depression severity and interpersonal closeness. We examined the linguistic features of outgoing text messages among individuals with depression and their close- and non-close contacts.

METHODS

419 participants were included in this 16-week-long observational study. Participants regularly completed the PHQ-8 and rated subjective closeness to their contacts. Text messages were processed to count frequencies of word usage in the LIWC 2015 libraries. A linear mixed modeling approach was used to estimate linguistic feature scores of outgoing text messages.

RESULTS

Regardless of closeness, people with higher PHQ-8 scores tended to use more differentiation words. When texting with close contacts, individuals with higher PHQ-8 scores used more first-person singular, filler, sexual, anger, and negative emotion words. When texting with non-close contacts these participants used more conjunctions, tentative, and sadness-related words and fewer first-person plural words.

CONCLUSION

Word classes used in text messages, when combined with symptom severity and subjective social closeness data, may be indicative of underlying interpersonal processes. These data may hold promise as potential treatment targets to address interpersonal drivers of depression.

摘要

背景

关于抑郁严重程度和人际亲密程度如何影响沟通变化,人们知之甚少。我们研究了抑郁患者及其亲密和非亲密联系人之间的外发短信的语言特征。

方法

本观察性研究共纳入 419 名参与者。参与者定期完成 PHQ-8 并对与联系人的主观亲密程度进行评分。短信经过处理,以计算 LIWC 2015 库中单词使用频率。采用线性混合模型方法估计外发短信的语言特征得分。

结果

无论亲密程度如何,PHQ-8 得分较高的人往往使用更多的区别性词汇。与亲密联系人发短信时,PHQ-8 得分较高的人使用更多的第一人称单数、填充词、性、愤怒和负面情绪词汇。与非亲密联系人发短信时,这些参与者使用更多的连词、试探性和与悲伤相关的词汇,以及更少的第一人称复数词汇。

结论

短信中使用的词类,结合症状严重程度和主观社会亲密程度数据,可能表明潜在的人际处理过程。这些数据可能有希望成为解决抑郁人际驱动因素的潜在治疗目标。

相似文献

3
Pilot study of psychotherapeutic text messaging for depression.
J Telemed Telecare. 2017 Aug;23(7):665-672. doi: 10.1177/1357633X16659955. Epub 2016 Jul 21.
5
The association of language style matching in text messages with mood and anxiety symptoms.
Procedia Comput Sci. 2022;206:151-161. doi: 10.1016/j.procs.2022.09.094. Epub 2022 Sep 21.
6
The relationship between text message sentiment and self-reported depression.
J Affect Disord. 2022 Apr 1;302:7-14. doi: 10.1016/j.jad.2021.12.048. Epub 2021 Dec 25.
8
Detecting adolescent depression through passive monitoring of linguistic markers in smartphone communication.
J Child Psychol Psychiatry. 2024 Jul;65(7):932-941. doi: 10.1111/jcpp.13931. Epub 2023 Dec 15.
9
Linguistic analysis of Latinx patients' responses to a text messaging adjunct during cognitive behavioral therapy for depression.
Behav Res Ther. 2022 Mar;150:104027. doi: 10.1016/j.brat.2021.104027. Epub 2021 Dec 31.

引用本文的文献

1
A randomised cross over trial examining the linguistic markers of depression and anxiety in symptomatic adults.
Npj Ment Health Res. 2025 Jul 19;4(1):30. doi: 10.1038/s44184-025-00140-y.
2
Beyond Detection: Towards Actionable Sensing Research in Clinical Mental Healthcare.
Proc ACM Interact Mob Wearable Ubiquitous Technol. 2024 Nov;8(4). doi: 10.1145/3699755. Epub 2024 Nov 21.
3
Postgraduate psychological stress detection from social media using BERT-Fused model.
PLoS One. 2024 Oct 31;19(10):e0312264. doi: 10.1371/journal.pone.0312264. eCollection 2024.
4
Language sentiment predicts changes in depressive symptoms.
Proc Natl Acad Sci U S A. 2024 Sep 24;121(39):e2321321121. doi: 10.1073/pnas.2321321121. Epub 2024 Sep 16.
5
Mental Health and Mobile Communication Profiles of Crowdsourced Participants.
IEEE J Biomed Health Inform. 2024 Dec;28(12):7683-7692. doi: 10.1109/JBHI.2024.3436654. Epub 2024 Dec 5.
8
Linguistic markers for major depressive disorder: a cross-sectional study using an automated procedure.
Front Psychol. 2024 Mar 6;15:1355734. doi: 10.3389/fpsyg.2024.1355734. eCollection 2024.
9
Specific associations of passively sensed smartphone data with future symptoms of avoidance, fear, and physiological distress in social anxiety.
Internet Interv. 2023 Oct 13;34:100683. doi: 10.1016/j.invent.2023.100683. eCollection 2023 Dec.

本文引用的文献

1
Head versus heart: social media reveals differential language of loneliness from depression.
Npj Ment Health Res. 2022 Oct 18;1(1):16. doi: 10.1038/s44184-022-00014-7.
2
The association of language style matching in text messages with mood and anxiety symptoms.
Procedia Comput Sci. 2022;206:151-161. doi: 10.1016/j.procs.2022.09.094. Epub 2022 Sep 21.
4
Automated Construction of Lexicons to Improve Depression Screening With Text Messages.
IEEE J Biomed Health Inform. 2023 Jun;27(6):2751-2759. doi: 10.1109/JBHI.2022.3203345. Epub 2023 Jun 6.
5
Linguistic measures of psychological distance track symptom levels and treatment outcomes in a large set of psychotherapy transcripts.
Proc Natl Acad Sci U S A. 2022 Mar 29;119(13):e2114737119. doi: 10.1073/pnas.2114737119. Epub 2022 Mar 22.
6
The relationship between text message sentiment and self-reported depression.
J Affect Disord. 2022 Apr 1;302:7-14. doi: 10.1016/j.jad.2021.12.048. Epub 2021 Dec 25.
8
Systematic Review of Digital Phenotyping and Machine Learning in Psychosis Spectrum Illnesses.
Harv Rev Psychiatry. 2020 Sep/Oct;28(5):296-304. doi: 10.1097/HRP.0000000000000268.
9
Screening For Depression With Retrospectively Harvested Private Versus Public Text.
IEEE J Biomed Health Inform. 2020 Nov;24(11):3326-3332. doi: 10.1109/JBHI.2020.2983035. Epub 2020 Nov 4.
10
Methods in predictive techniques for mental health status on social media: a critical review.
NPJ Digit Med. 2020 Mar 24;3:43. doi: 10.1038/s41746-020-0233-7. eCollection 2020.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验