Suppr超能文献

通过人工智能选择性添加数字乳腺断层合成技术进行个性化乳腺癌筛查。

Personalized breast cancer screening with selective addition of digital breast tomosynthesis through artificial intelligence.

作者信息

Dahlblom Victor, Tingberg Anders, Zackrisson Sophia, Dustler Magnus

机构信息

Lund University, Department of Translational Medicine, Diagnostic Radiology, Malmö, Sweden.

Skåne University Hospital, Department of Medical Imaging and Physiology, Malmö, Sweden.

出版信息

J Med Imaging (Bellingham). 2023 Feb;10(Suppl 2):S22408. doi: 10.1117/1.JMI.10.S2.S22408. Epub 2023 Jun 1.

Abstract

PURPOSE

Breast cancer screening is predominantly performed using digital mammography (DM), but digital breast tomosynthesis (DBT) has higher sensitivity. DBT demands more resources than DM, and it might be more feasible to reserve DBT for women with a clear benefit from the technique. We explore if artificial intelligence (AI) can select women who would benefit from DBT imaging.

APPROACH

We used data from Malmö Breast Tomosynthesis Screening Trial, where all women prospectively were examined with separately double read DM and DBT. We retrospectively analyzed DM examinations () with a breast cancer detection system and used the provided risk score (1 to 10) for risk stratification. We tested how different score thresholds for adding DBT to an initial DM affects the number of detected cancers, additional DBT examinations needed, detection rate, and false positives.

RESULTS

If using a threshold of 9.0, 25 (26%) more cancers would be detected compared to using DM alone. Of the 41 cancers only detected on DBT, 61% would be detected, with only 1797 (12%) of the women examined with both DM and DBT. The detection rate for the added DBT would be 14/1000 women, whereas the false-positive recalls would be increased with 58 (21%).

CONCLUSION

Using DBT only for selected high gain cases could be an alternative to complete DBT screening. AI can analyze initial DM images to identify high gain cases where DBT can be added during the same visit. There might be logistical challenges, and further studies in a prospective setting are necessary.

摘要

目的

乳腺癌筛查主要采用数字乳腺钼靶摄影(DM),但数字乳腺断层合成(DBT)具有更高的灵敏度。DBT比DM需要更多资源,将DBT仅用于明显能从该技术中获益的女性可能更可行。我们探讨人工智能(AI)能否筛选出能从DBT成像中获益的女性。

方法

我们使用了马尔默乳腺断层合成筛查试验的数据,所有女性均接受了单独的双读DM和DBT前瞻性检查。我们使用乳腺癌检测系统对DM检查进行回顾性分析,并使用提供的风险评分(1至10)进行风险分层。我们测试了在初始DM基础上增加DBT的不同评分阈值如何影响检测到的癌症数量、所需额外DBT检查的数量、检测率和假阳性。

结果

如果使用9.0的阈值,与仅使用DM相比,将多检测出25例(26%)癌症。在仅通过DBT检测出的41例癌症中,61%的癌症可以被检测到,而同时接受DM和DBT检查的女性中只有1797例(12%)。增加的DBT的检测率为每1000名女性中有14例,而假阳性召回率将增加58例(21%)。

结论

仅将DBT用于选定的高获益病例可能是全DBT筛查的一种替代方案。人工智能可以分析初始DM图像,识别出在同一次就诊时可以增加DBT的高获益病例。可能存在后勤方面的挑战,有必要在未来进行进一步的前瞻性研究。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/6bcb/10234408/35d611acd66b/JMI-010-S22408-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验