Suppr超能文献

使用半监督深度学习对细胞冷冻软 X 射线显微镜断层扫描进行 3D 表面重建。

3D surface reconstruction of cellular cryo-soft X-ray microscopy tomograms using semisupervised deep learning.

机构信息

Institute of Chemistry and Biochemistry, Department of Biology, Chemistry and Pharmacy, Free University of Berlin, 14195 Berlin, Germany.

Artificial Intelligence of the Sciences Group, Department of Mathematics and Informatics, Free University of Berlin, 14195 Berlin, Germany.

出版信息

Proc Natl Acad Sci U S A. 2023 Jun 13;120(24):e2209938120. doi: 10.1073/pnas.2209938120. Epub 2023 Jun 5.

Abstract

Cryo-soft X-ray tomography (cryo-SXT) is a powerful method to investigate the ultrastructure of cells, offering resolution in the tens of nanometer range and strong contrast for membranous structures without requiring labeling or chemical fixation. The short acquisition time and the relatively large field of view leads to fast acquisition of large amounts of tomographic image data. Segmentation of these data into accessible features is a necessary step in gaining biologically relevant information from cryo-soft X-ray tomograms. However, manual image segmentation still requires several orders of magnitude more time than data acquisition. To address this challenge, we have here developed an end-to-end automated 3D segmentation pipeline based on semisupervised deep learning. Our approach is suitable for high-throughput analysis of large amounts of tomographic data, while being robust when faced with limited manual annotations and variations in the tomographic conditions. We validate our approach by extracting three-dimensional information on cellular ultrastructure and by quantifying nanoscopic morphological parameters of filopodia in mammalian cells.

摘要

低温软 X 射线断层扫描(cryo-SXT)是一种强大的方法,可用于研究细胞的超微结构,在数十纳米的范围内提供分辨率,对膜结构具有强烈的对比度,而无需进行标记或化学固定。较短的采集时间和相对较大的视场导致大量断层扫描图像数据的快速采集。将这些数据分割成可访问的特征是从低温软 X 射线断层扫描中获取生物学相关信息的必要步骤。然而,手动图像分割仍然需要比数据采集多几个数量级的时间。为了解决这一挑战,我们在这里开发了一个基于半监督深度学习的端到端自动化 3D 分割管道。我们的方法适用于大量断层扫描数据的高通量分析,并且在面对有限的手动注释和断层扫描条件变化时具有很强的鲁棒性。我们通过提取细胞超微结构的三维信息,并量化哺乳动物细胞中丝状伪足的纳米级形态参数,验证了我们的方法。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/cff9/10268598/9ef75acd3ccc/pnas.2209938120fig01.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验