IEEE Trans Biomed Eng. 2023 Dec;70(12):3265-3276. doi: 10.1109/TBME.2023.3280463. Epub 2023 Nov 21.
Deformable Image Registration (DIR) plays a significant role in quantifying deformation in medical data. Recent Deep Learning methods have shown promising accuracy and speedup for registering a pair of medical images. However, in 4D (3D + time) medical data, organ motion, such as respiratory motion and heart beating, can not be effectively modeled by pair-wise methods as they were optimized for image pairs but did not consider the organ motion patterns necessary when considering 4D data.
This article presents ORRN, an Ordinary Differential Equations (ODE)-based recursive image registration network. Our network learns to estimate time-varying voxel velocities for an ODE that models deformation in 4D image data. It adopts a recursive registration strategy to progressively estimate a deformation field through ODE integration of voxel velocities.
We evaluate the proposed method on two publicly available lung 4DCT datasets, DIRLab and CREATIS, for two tasks: 1) registering all images to the extreme inhale image for 3D+t deformation tracking and 2) registering extreme exhale to inhale phase images. Our method outperforms other learning-based methods in both tasks, producing the smallest Target Registration Error of 1.24 mm and 1.26 mm, respectively. Additionally, it produces less than 0.001% unrealistic image folding, and the computation speed is less than 1 s for each CT volume.
ORRN demonstrates promising registration accuracy, deformation plausibility, and computation efficiency on group-wise and pair-wise registration tasks.
It has significant implications in enabling fast and accurate respiratory motion estimation for treatment planning in radiation therapy or robot motion planning in thoracic needle insertion.
形变图像配准(DIR)在量化医学数据中的形变中起着重要作用。最近的深度学习方法在注册一对医学图像方面显示出了有希望的准确性和速度提升。然而,在 4D(3D+时间)医学数据中,器官运动,如呼吸运动和心跳,可以不能通过对图像对进行优化的成对方法有效地建模,因为它们没有考虑到在考虑 4D 数据时所需的器官运动模式。
本文提出了 ORRN,一种基于常微分方程(ODE)的递归图像配准网络。我们的网络学习为 4D 图像数据的变形建模的 ODE 来估计时变体素速度。它采用递归配准策略,通过 ODE 积分体素速度逐步估计变形场。
我们在两个公开的肺部 4DCT 数据集 DIRLab 和 CREATIS 上评估了所提出的方法,用于两个任务:1)将所有图像注册到极端吸气图像以进行 3D+t 变形跟踪,2)将极端呼气注册到吸气相位图像。我们的方法在两个任务中都优于其他基于学习的方法,分别产生最小的目标配准误差为 1.24mm 和 1.26mm。此外,它产生的不切实际的图像折叠少于 0.001%,并且每个 CT 体积的计算速度小于 1s。
ORRN 在群组和对配准任务中表现出有希望的配准准确性、变形可信度和计算效率。
它在放射治疗中的快速准确的呼吸运动估计或胸部针插入中的机器人运动规划中具有重要意义。