Department of Materials Science and Engineering, Pennsylvania State University, University Park, PA, 16802, USA.
Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing, 100190, China.
Nat Commun. 2023 Jun 6;14(1):3300. doi: 10.1038/s41467-023-38446-0.
To achieve optimal thermoelectric performance, it is crucial to manipulate the scattering processes within materials to decouple the transport of phonons and electrons. In half-Heusler (hH) compounds, selective defect reduction can significantly improve performance due to the weak electron-acoustic phonon interaction. This study utilized Sb-pressure controlled annealing process to modulate the microstructure and point defects of NbTaTiFeSb compound, resulting in a 100% increase in carrier mobility and a maximum power factor of 78 µW cm K, approaching the theoretical prediction for NbFeSb single crystal. This approach yielded the highest average zT of ~0.86 among hH in the temperature range of 300-873 K. The use of this material led to a 210% enhancement in cooling power density compared to BiTe-based devices and a conversion efficiency of 12%. These results demonstrate a promising strategy for optimizing hH materials for near-room-temperature thermoelectric applications.
为了实现最佳的热电性能,必须操纵材料中的散射过程以解耦声子和电子的输运。在半赫斯勒(hH)化合物中,由于电子-声子相互作用较弱,选择性缺陷减少可显著提高性能。本研究利用 Sb 压力控制退火工艺来调节 NbTaTiFeSb 化合物的微观结构和点缺陷,从而使载流子迁移率提高了 100%,最大功率因子达到了 78µWcmK,接近 NbFeSb 单晶的理论预测值。该方法在 300-873K 的温度范围内实现了 hH 中最高的平均 zT 值约为 0.86。与基于 BiTe 的器件相比,该材料的冷却功率密度提高了 210%,转换效率为 12%。这些结果表明,优化 hH 材料以用于近室温热电应用是一种很有前途的策略。