Moody James W, Keister Lisa A, Ramos Maria C
Department of Sociology, Duke University, Durham, North Carolina, USA.
Duke Network Analysis Center, Duke University, Durham, North Carolina, USA.
Annu Rev Sociol. 2022 Jul;48(1):65-85. doi: 10.1146/annurev-soc-090221-035954. Epub 2022 Apr 26.
Concern over social scientists' inability to reproduce empirical research has spawned a vast and rapidly growing literature. The size and growth of this literature make it difficult for newly interested academics to come up to speed. Here, we provide a formal text modeling approach to characterize the entirety of the field, which allows us to summarize the breadth of this literature and identify core themes. We construct and analyze text networks built from 1,947 articles to reveal differences across social science disciplines within the body of reproducibility publications and to discuss the diversity of subtopics addressed in the literature. This field-wide view suggests that reproducibility is a heterogeneous problem with multiple sources for errors and strategies for solutions, a finding that is somewhat at odds with calls for largely passive remedies reliant on open science. We propose an alternative rigor and reproducibility model that takes an active approach to rigor prior to publication, which may overcome some of the shortfalls of the postpublication model.
对社会科学家无法重复实证研究的担忧催生了大量且迅速增长的文献。这些文献的规模和增长速度使得新感兴趣的学者难以跟上进度。在此,我们提供一种形式化的文本建模方法来刻画该领域的整体情况,这使我们能够总结这些文献的广度并识别核心主题。我们构建并分析了由1947篇文章构成的文本网络,以揭示可重复性出版物主体内社会科学各学科之间的差异,并讨论文献中涉及的子主题的多样性。这种全领域的观点表明,可重复性是一个异质性问题,存在多种错误来源和解决策略,这一发现与主要依赖开放科学的被动补救措施的呼吁有些不一致。我们提出了一种替代性的严谨性和可重复性模型,该模型在发表前对严谨性采取积极的方法,这可能会克服发表后模型的一些不足。