IEEE Trans Neural Netw Learn Syst. 2024 Oct;35(10):14633-14644. doi: 10.1109/TNNLS.2023.3280646. Epub 2024 Oct 7.
Detecting pneumonia, especially coronavirus disease 2019 (COVID-19), from chest X-ray (CXR) images is one of the most effective ways for disease diagnosis and patient triage. The application of deep neural networks (DNNs) for CXR image classification is limited due to the small sample size of the well-curated data. To tackle this problem, this article proposes a distance transformation-based deep forest framework with hybrid-feature fusion (DTDF-HFF) for accurate CXR image classification. In our proposed method, hybrid features of CXR images are extracted in two ways: hand-crafted feature extraction and multigrained scanning. Different types of features are fed into different classifiers in the same layer of the deep forest (DF), and the prediction vector obtained at each layer is transformed to form distance vector based on a self-adaptive scheme. The distance vectors obtained by different classifiers are fused and concatenated with the original features, then input into the corresponding classifier at the next layer. The cascade grows until DTDF-HFF can no longer gain benefits from the new layer. We compare the proposed method with other methods on the public CXR datasets, and the experimental results show that the proposed method can achieve state-of-the art (SOTA) performance. The code will be made publicly available at https://github.com/hongqq/DTDF-HFF.
从胸部 X 光(CXR)图像中检测肺炎,特别是 2019 年冠状病毒病(COVID-19),是疾病诊断和患者分诊的最有效方法之一。由于精心整理的数据样本量小,深度神经网络(DNN)在 CXR 图像分类中的应用受到限制。针对这个问题,本文提出了一种基于距离变换的深度森林框架,具有混合特征融合(DTDF-HFF),用于准确的 CXR 图像分类。在我们提出的方法中,CXR 图像的混合特征通过两种方式提取:手工特征提取和多粒度扫描。不同类型的特征被输入到深度森林(DF)的同一层中的不同分类器中,并且在每一层获得的预测向量被转换为基于自适应方案的距离向量。来自不同分类器的距离向量被融合并与原始特征串联,然后输入到下一层的相应分类器中。级联增长,直到 DTDF-HFF 无法从新层中获得收益。我们在公共 CXR 数据集上比较了所提出的方法与其他方法,实验结果表明,所提出的方法可以达到最新的性能水平。代码将在 https://github.com/hongqq/DTDF-HFF 上公开。