Wang Ban, Starr Alexander L, Fraser Hunter B
Department of Biology, Stanford University, Stanford, CA, USA.
bioRxiv. 2023 Sep 25:2023.05.22.541747. doi: 10.1101/2023.05.22.541747.
Although gene expression divergence has long been postulated to be the primary driver of human evolution, identifying the genes and genetic variants underlying uniquely human traits has proven to be quite challenging. Theory suggests that cell type-specific -regulatory variants may fuel evolutionary adaptation due to the specificity of their effects. These variants can precisely tune the expression of a single gene in a single cell type, avoiding the potentially deleterious consequences of -acting changes and non-cell type-specific changes that can impact many genes and cell types, respectively. It has recently become possible to quantify human-specific -acting regulatory divergence by measuring allele-specific expression in human-chimpanzee hybrid cells-the product of fusing induced pluripotent stem (iPS) cells of each species . However, these -regulatory changes have only been explored in a limited number of cell types. Here, we quantify human-chimpanzee -regulatory divergence in gene expression and chromatin accessibility across six cell types, enabling the identification of highly cell type-specific -regulatory changes. We find that cell type-specific genes and regulatory elements evolve faster than those shared across cell types, suggesting an important role for genes with cell type-specific expression in human evolution. Furthermore, we identify several instances of lineage-specific natural selection that may have played key roles in specific cell types, such as coordinated changes in the -regulation of dozens of genes involved in neuronal firing in motor neurons. Finally, using novel metrics and a machine learning model, we identify genetic variants that likely alter chromatin accessibility and transcription factor binding, leading to neuron-specific changes in the expression of the neurodevelopmentally important genes and . Overall, our results demonstrate that integrative analysis of -regulatory divergence in chromatin accessibility and gene expression across cell types is a promising approach to identify the specific genes and genetic variants that make us human.
尽管长期以来人们一直假定基因表达差异是人类进化的主要驱动力,但要确定构成独特人类特征的基因和遗传变异却颇具挑战性。理论表明,细胞类型特异性调控变异可能因其效应的特异性而推动进化适应。这些变异能够精确调节单一细胞类型中单个基因的表达,避免了分别影响许多基因和细胞类型的全局作用变化及非细胞类型特异性变化可能带来的潜在有害后果。最近,通过测量人类 - 黑猩猩杂交细胞中的等位基因特异性表达(每个物种的诱导多能干细胞融合的产物),已能够量化人类特异性全局作用调控差异。然而,这些调控变化仅在有限数量的细胞类型中得到研究。在这里,我们量化了人类和黑猩猩在六种细胞类型中的基因表达和染色质可及性方面的调控差异,从而能够识别高度细胞类型特异性的调控变化。我们发现,细胞类型特异性基因和调控元件的进化速度比跨细胞类型共享的基因和元件更快,这表明细胞类型特异性表达的基因在人类进化中发挥着重要作用。此外,我们还识别出了几个谱系特异性自然选择的实例,这些实例可能在特定细胞类型中发挥了关键作用,比如运动神经元中数十个参与神经元放电调控的基因的协同变化。最后,我们使用新的指标和机器学习模型,识别出可能改变染色质可及性和转录因子结合的遗传变异,从而导致神经发育重要基因 和 的表达发生神经元特异性变化。总体而言,我们的结果表明,对跨细胞类型的染色质可及性和基因表达调控差异进行综合分析,是识别使我们成为人类的特定基因和遗传变异的一种有前景的方法。