Suppr超能文献

治疗师反馈及对采用基于人工智能的共同促进者开展在线癌症支持小组的影响:混合方法单臂可用性研究

Therapist Feedback and Implications on Adoption of an Artificial Intelligence-Based Co-Facilitator for Online Cancer Support Groups: Mixed Methods Single-Arm Usability Study.

作者信息

Leung Yvonne W, Ng Steve, Duan Lauren, Lam Claire, Chan Kenith, Gancarz Mathew, Rennie Heather, Trachtenberg Lianne, Chan Kai P, Adikari Achini, Fang Lin, Gratzer David, Hirst Graeme, Wong Jiahui, Esplen Mary Jane

机构信息

de Souza Institute, University Health Network, Toronto, ON, Canada.

Department of Psychiatry, Temerty Faculty of Medicine, University of Toronto, Toronto, ON, Canada.

出版信息

JMIR Cancer. 2023 Jun 9;9:e40113. doi: 10.2196/40113.

Abstract

BACKGROUND

The recent onset of the COVID-19 pandemic and the social distancing requirement have created an increased demand for virtual support programs. Advances in artificial intelligence (AI) may offer novel solutions to management challenges such as the lack of emotional connections within virtual group interventions. Using typed text from online support groups, AI can help identify the potential risk of mental health concerns, alert group facilitator(s), and automatically recommend tailored resources while monitoring patient outcomes.

OBJECTIVE

The aim of this mixed methods, single-arm study was to evaluate the feasibility, acceptability, validity, and reliability of an AI-based co-facilitator (AICF) among CancerChatCanada therapists and participants to monitor online support group participants' distress through a real-time analysis of texts posted during the support group sessions. Specifically, AICF (1) generated participant profiles with discussion topic summaries and emotion trajectories for each session, (2) identified participant(s) at risk for increased emotional distress and alerted the therapist for follow-up, and (3) automatically suggested tailored recommendations based on participant needs. Online support group participants consisted of patients with various types of cancer, and the therapists were clinically trained social workers.

METHODS

Our study reports on the mixed methods evaluation of AICF, including therapists' opinions as well as quantitative measures. AICF's ability to detect distress was evaluated by the patient's real-time emoji check-in, the Linguistic Inquiry and Word Count software, and the Impact of Event Scale-Revised.

RESULTS

Although quantitative results showed only some validity of AICF's ability in detecting distress, the qualitative results showed that AICF was able to detect real-time issues that are amenable to treatment, thus allowing therapists to be more proactive in supporting every group member on an individual basis. However, therapists are concerned about the ethical liability of AICF's distress detection function.

CONCLUSIONS

Future works will look into wearable sensors and facial cues by using videoconferencing to overcome the barriers associated with text-based online support groups.

INTERNATIONAL REGISTERED REPORT IDENTIFIER (IRRID): RR2-10.2196/21453.

摘要

背景

近期新冠疫情的爆发以及社交距离要求导致对虚拟支持项目的需求增加。人工智能(AI)的进步可能为管理挑战提供新的解决方案,比如虚拟团体干预中缺乏情感联系的问题。通过在线支持小组的打字文本,人工智能可以帮助识别心理健康问题的潜在风险,提醒小组主持人,并在监测患者结果的同时自动推荐量身定制的资源。

目的

这项混合方法单臂研究的目的是评估基于人工智能的联合主持人(AICF)在加拿大癌症聊天治疗师和参与者中监测在线支持小组参与者痛苦程度的可行性、可接受性、有效性和可靠性,通过实时分析支持小组会议期间发布的文本。具体而言,AICF(1)为每个会议生成带有讨论主题摘要和情绪轨迹的参与者档案,(2)识别有情绪困扰加剧风险的参与者并提醒治疗师进行跟进,(3)根据参与者需求自动提出量身定制的建议。在线支持小组参与者包括患有各种癌症的患者,治疗师是经过临床培训的社会工作者。

方法

我们的研究报告了对AICF的混合方法评估,包括治疗师的意见以及定量测量。AICF检测痛苦程度的能力通过患者的实时表情符号签到、语言查询与字数统计软件以及事件影响量表修订版进行评估。

结果

虽然定量结果仅显示AICF检测痛苦程度能力的部分有效性,但定性结果表明AICF能够检测出适合治疗的实时问题,从而使治疗师能够更积极主动地为每个小组成员提供个性化支持。然而,治疗师担心AICF痛苦检测功能的伦理责任。

结论

未来的工作将研究通过视频会议使用可穿戴传感器和面部线索,以克服与基于文本的在线支持小组相关的障碍。

国际注册报告识别码(IRRID):RR2-10.2196/21453

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/3bd8/10334721/b9ed92963d97/cancer_v9i1e40113_fig1.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验