Suppr超能文献

外排泵基因扩增可绕过针对双重靶向抗生素耐药性所需的多个靶标突变。

Efflux pump gene amplifications bypass necessity of multiple target mutations for resistance against dual-targeting antibiotic.

机构信息

Laboratory of Molecular Biology, National Cancer Institute, National Institutes of Health, Bethesda, MD, 20892, USA.

出版信息

Nat Commun. 2023 Jun 9;14(1):3402. doi: 10.1038/s41467-023-38507-4.

Abstract

Antibiotics that have multiple cellular targets theoretically reduce the frequency of resistance evolution, but adaptive trajectories and resistance mechanisms against such antibiotics are understudied. Here we investigate these in methicillin resistant Staphylococcus aureus (MRSA) using experimental evolution upon exposure to delafloxacin (DLX), a novel fluoroquinolone that targets both DNA gyrase and topoisomerase IV. We show that selection for coding sequence mutations and genomic amplifications of the gene encoding a poorly characterized efflux pump, SdrM, leads to high DLX resistance, circumventing the requirement for mutations in both target enzymes. In the evolved populations, sdrM overexpression due to genomic amplifications containing sdrM and two adjacent genes encoding efflux pumps results in high DLX resistance, while the adjacent hitchhiking efflux pumps contribute to streptomycin cross-resistance. Further, lack of sdrM necessitates mutations in both target enzymes to evolve DLX resistance, and sdrM thus increases the frequency of resistance evolution. Finally, sdrM mutations and amplifications are similarly selected in two diverse clinical isolates, indicating the generality of this DLX resistance mechanism. Our study highlights that instead of reduced rates of resistance, evolution of resistance to multi-targeting antibiotics can involve alternate high-frequency evolutionary paths, that may cause unexpected alterations of the fitness landscape, including antibiotic cross-resistance.

摘要

抗生素具有多个细胞靶标,理论上可以降低耐药性进化的频率,但针对此类抗生素的适应性轨迹和耐药机制仍研究不足。在这里,我们使用暴露于新型氟喹诺酮类药物达拉氟沙星(DLX)的实验进化来研究耐甲氧西林金黄色葡萄球菌(MRSA)中的这些问题,DLX 同时靶向 DNA 回旋酶和拓扑异构酶 IV。我们表明,编码一种特征描述不佳的外排泵 SdrM 的基因的编码序列突变和基因组扩增的选择导致了高 DLX 耐药性,从而避免了靶酶同时发生突变的要求。在进化后的群体中,由于包含 sdrM 和两个编码外排泵的相邻基因的基因组扩增导致 sdrM 过表达,从而导致高 DLX 耐药性,而相邻的搭便车外排泵导致链霉素交叉耐药性。此外,缺乏 sdrM 需要在两个靶酶上发生突变才能进化出 DLX 耐药性,因此 sdrM 增加了耐药性进化的频率。最后,在两种不同的临床分离株中同样选择了 sdrM 突变和扩增,表明这种 DLX 耐药机制具有普遍性。我们的研究表明,针对多靶抗生素的耐药性进化可能涉及替代的高频进化途径,而不是降低耐药率,这可能导致适应性景观的意外改变,包括抗生素交叉耐药性。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/87e3/10256781/ec053ed524ad/41467_2023_38507_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验