Suppr超能文献

具有分层影响和激活阈值的社交网络中的目标集选择

Target set selection in social networks with tiered influence and activation thresholds.

作者信息

Qiang Zhecheng, Pasiliao Eduardo L, Zheng Qipeng P

机构信息

Department of Industrial Engineering and Management Systems, University of Central Florida, Orlando, Florida USA.

Munitions Directorate, Air Force Research Laboratory, Shalimar, Florida USA.

出版信息

J Comb Optim. 2023;45(5):117. doi: 10.1007/s10878-023-01023-8. Epub 2023 Jun 7.

Abstract

Thanks to the mass adoption of internet and mobile devices, users of the social media can seamlessly and spontaneously connect with their friends, followers and followees. Consequently, social media networks have gradually become the major venue for broadcasting and relaying information, and is casting great influences on the people in many aspects of their daily lives. Thus locating those influential users in social media has become crucially important for the successes of many viral marketing, cyber security, politics, and safety-related applications. In this study, we address the problem through solving the tiered influence and activation thresholds target set selection problem, which is to find the seed nodes that can influence the most users within a limited time frame. Both the minimum influential seeds and maximum influence within budget problems are considered in this study. Besides, this study proposes several models exploiting different requirements on seed nodes selection, such as maximum activation, early activation and dynamic threshold. These time-indexed integer program models suffer from the computational difficulties due to the large numbers of binary variables to model influence actions at each time epoch. To address this challenge, this paper designs and leverages several efficient algorithms, i.e., Graph Partition, Nodes Selection, Greedy algorithm, recursive threshold back algorithm and two-stage approach in time, especially for large-scale networks. Computational results show that it is beneficial to apply either the breadth first search or depth first search greedy algorithms for the large instances. In addition, algorithms based on node selection methods perform better in the long-tailed networks.

摘要

由于互联网和移动设备的广泛应用,社交媒体用户能够无缝且自发地与朋友、关注者和被关注者建立联系。因此,社交媒体网络逐渐成为信息传播和中继的主要场所,并在人们日常生活的许多方面产生着重大影响。所以,在社交媒体中定位那些有影响力的用户对于许多病毒式营销、网络安全、政治及安全相关应用的成功至关重要。在本研究中,我们通过解决分层影响力和激活阈值目标集选择问题来应对这一难题,即找到能在有限时间内影响最多用户的种子节点。本研究考虑了最小影响力种子节点和预算内最大影响力这两个问题。此外,本研究还提出了几种针对种子节点选择利用不同要求的模型,如最大激活、早期激活和动态阈值。这些时间索引整数规划模型由于要在每个时间点对影响行为进行建模而存在大量二进制变量,从而面临计算困难。为应对这一挑战,本文设计并利用了几种高效算法,即图划分、节点选择、贪心算法、递归阈值回溯算法以及时间上的两阶段方法,尤其适用于大规模网络。计算结果表明,对于大型实例应用广度优先搜索或深度优先搜索贪心算法是有益的。此外,基于节点选择方法的算法在长尾网络中表现更佳。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/64ff/10244866/222e8cb93b73/10878_2023_1023_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验