Suppr超能文献

己糖胺生物合成途径通量的增加改变了 INS-1E 细胞和小鼠胰岛中的细胞-细胞黏附。

Increased hexosamine biosynthetic pathway flux alters cell-cell adhesion in INS-1E cells and murine islets.

机构信息

DiSTeBA, Centro Ecotekne, Strada Monteroni, University of Salento, 73100, Lecce, Italy.

Institute of Experimental Neurology and Division of Neuroscience, Neuropathology Unit, IRCCS San Raffaele Scientific Institute, 20132, Milan, Italy.

出版信息

Endocrine. 2023 Sep;81(3):492-502. doi: 10.1007/s12020-023-03412-9. Epub 2023 Jun 12.

Abstract

PURPOSE

In type 2 Diabetes, β-cell failure is caused by loss of cell mass, mostly by apoptosis, but also by simple dysfunction (dedifferentiation, decline of glucose-stimulated insulin secretion). Apoptosis and dysfunction are caused, at least in part, by glucotoxicity, in which increased flux of glucose in the hexosamine biosynthetic pathway plays a role. In this study, we sought to clarify whether increased hexosamine biosynthetic pathway flux affects another important aspect of β-cell physiology, that is β-cell-β-cell homotypic interactions.

METHODS

We used INS-1E cells and murine islets. The expression and cellular distribution of E-cadherin and β-catenin was evaluated by immunofluorescence, immunohistochemistry and western blot. Cell-cell adhesion was examined by the hanging-drop aggregation assay, islet architecture by isolation and microscopic observation.

RESULTS

E-cadherin expression was not changed by increased hexosamine biosynthetic pathway flux, however, there was a decrease of cell surface, and an increase in intracellular E-cadherin. Moreover, intracellular E-cadherin delocalized, at least in part, from the Golgi complex to the endoplasmic reticulum. Beta-catenin was found to parallel the E-cadherin redistribution, showing a dislocation from the plasmamembrane to the cytosol. These changes had as a phenotypic consequence a decreased ability of INS-1E to aggregate. Finally, in ex vivo experiments, glucosamine was able to alter islet structure and to decrease surface abundandance of E-cadherin and β-catenin.

CONCLUSION

Increased hexosamine biosynthetic pathway flux alters E-cadherin cellular localization both in INS-1E cells and murine islets and affects cell-cell adhesion and islet morphology. These changes are likely caused by alterations of E-cadherin function, highlighting a new potential target to counteract the consequences of glucotoxicity on β-cells.

摘要

目的

在 2 型糖尿病中,β 细胞衰竭是由细胞数量减少引起的,主要通过细胞凋亡,但也通过简单的功能障碍(去分化、葡萄糖刺激的胰岛素分泌减少)。凋亡和功能障碍至少部分是由糖毒性引起的,其中葡萄糖在己糖胺生物合成途径中的通量增加发挥了作用。在这项研究中,我们试图阐明增加的己糖胺生物合成途径通量是否会影响β 细胞生理学的另一个重要方面,即β 细胞-β 细胞同质相互作用。

方法

我们使用 INS-1E 细胞和小鼠胰岛。通过免疫荧光、免疫组织化学和 Western blot 评估 E-钙黏蛋白和β-连环蛋白的表达和细胞分布。通过悬滴聚集测定法检查细胞-细胞黏附,通过分离和显微镜观察检查胰岛结构。

结果

增加的己糖胺生物合成途径通量不会改变 E-钙黏蛋白的表达,但细胞表面的 E-钙黏蛋白减少,细胞内的 E-钙黏蛋白增加。此外,细胞内的 E-钙黏蛋白至少部分从高尔基体易位到内质网。β-连环蛋白的分布与 E-钙黏蛋白的再分布平行,从质膜转位到细胞质。这些变化的表型后果是 INS-1E 聚集能力下降。最后,在离体实验中,葡糖胺能够改变胰岛结构并降低 E-钙黏蛋白和β-连环蛋白的表面丰度。

结论

增加的己糖胺生物合成途径通量改变了 INS-1E 细胞和小鼠胰岛中 E-钙黏蛋白的细胞定位,并影响细胞-细胞黏附和胰岛形态。这些变化可能是由 E-钙黏蛋白功能的改变引起的,突出了一个新的潜在靶点,以对抗糖毒性对β 细胞的影响。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/1a61/10403402/53cd85497b6c/12020_2023_3412_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验