Suppr超能文献

RENB 实验室间比对 2021 年:八种剂量测定分析的实验室内比对。

RENEB Inter-Laboratory Comparison 2021: Inter-Assay Comparison of Eight Dosimetry Assays.

机构信息

Bundeswehr Institute of Radiobiology, Munich, Germany.

Universitat Autònoma de Barcelona, Barcelona, Spain.

出版信息

Radiat Res. 2023 Jun 1;199(6):535-555. doi: 10.1667/RADE-22-00207.1.

Abstract

Tools for radiation exposure reconstruction are required to support the medical management of radiation victims in radiological or nuclear incidents. Different biological and physical dosimetry assays can be used for various exposure scenarios to estimate the dose of ionizing radiation a person has absorbed. Regular validation of the techniques through inter-laboratory comparisons (ILC) is essential to guarantee high quality results. In the current RENEB inter-laboratory comparison, the performance quality of established cytogenetic assays [dicentric chromosome assay (DCA), cytokinesis-block micronucleus assay (CBMN), stable chromosomal translocation assay (FISH) and premature chromosome condensation assay (PCC)] was tested in comparison to molecular biological assays [gamma-H2AX foci (gH2AX), gene expression (GE)] and physical dosimetry-based assays [electron paramagnetic resonance (EPR), optically or thermally stimulated luminescence (LUM)]. Three blinded coded samples (e.g., blood, enamel or mobiles) were exposed to 0, 1.2 or 3.5 Gy X-ray reference doses (240 kVp, 1 Gy/min). These doses roughly correspond to clinically relevant groups of unexposed to low exposed (0-1 Gy), moderately exposed (1-2 Gy, no severe acute health effects expected) and highly exposed individuals (>2 Gy, requiring early intensive medical care). In the frame of the current RENEB inter-laboratory comparison, samples were sent to 86 specialized teams in 46 organizations from 27 nations for dose estimation and identification of three clinically relevant groups. The time for sending early crude reports and more precise reports was documented for each laboratory and assay where possible. The quality of dose estimates was analyzed with three different levels of granularity, 1. by calculating the frequency of correctly reported clinically relevant dose categories, 2. by determining the number of dose estimates within the uncertainty intervals recommended for triage dosimetry (±0.5 Gy or ±1.0 Gy for doses <2.5 Gy or >2.5 Gy), and 3. by calculating the absolute difference (AD) of estimated doses relative to the reference doses. In total, 554 dose estimates were submitted within the 6-week period given before the exercise was closed. For samples processed with the highest priority, earliest dose estimates/categories were reported within 5-10 h of receipt for GE, gH2AX, LUM, EPR, 2-3 days for DCA, CBMN and within 6-7 days for the FISH assay. For the unirradiated control sample, the categorization in the correct clinically relevant group (0-1 Gy) as well as the allocation to the triage uncertainty interval was, with the exception of a few outliers, successfully performed for all assays. For the 3.5 Gy sample the percentage of correct classifications to the clinically relevant group (≥2 Gy) was between 89-100% for all assays, with the exception of gH2AX. For the 1.2 Gy sample, an exact allocation to the clinically relevant group was more difficult and 0-50% or 0-48% of the estimates were wrongly classified into the lowest or highest dose categories, respectively. For the irradiated samples, the correct allocation to the triage uncertainty intervals varied considerably between assays for the 1.2 Gy (29-76%) and 3.5 Gy (17-100%) samples. While a systematic shift towards higher doses was observed for the cytogenetic-based assays, extreme outliers exceeding the reference doses 2-6 fold were observed for EPR, FISH and GE assays. These outliers were related to a particular material examined (tooth enamel for EPR assay, reported as kerma in enamel, but when converted into the proper quantity, i.e. to kerma in air, expected dose estimates could be recalculated in most cases), the level of experience of the teams (FISH) and methodological uncertainties (GE). This was the first RENEB ILC where everything, from blood sampling to irradiation and shipment of the samples, was organized and realized at the same institution, for several biological and physical retrospective dosimetry assays. Almost all assays appeared comparably applicable for the identification of unexposed and highly exposed individuals and the allocation of medical relevant groups, with the latter requiring medical support for the acute radiation scenario simulated in this exercise. However, extreme outliers or a systematic shift of dose estimates have been observed for some assays. Possible reasons will be discussed in the assay specific papers of this special issue. In summary, this ILC clearly demonstrates the need to conduct regular exercises to identify research needs, but also to identify technical problems and to optimize the design of future ILCs.

摘要

用于辐射暴露重建的工具对于支持放射性或核事件中辐射受害者的医疗管理至关重要。不同的生物和物理剂量测定分析可以用于各种暴露情况,以估计一个人吸收的电离辐射剂量。通过实验室间比较(ILC)定期验证技术对于保证高质量的结果至关重要。在当前的 RENEB 实验室间比较中,比较了已建立的细胞遗传学测定分析(双着丝粒染色体分析(DCA)、胞质分裂微核分析(CBMN)、稳定染色体易位分析(FISH)和早熟染色体凝聚分析(PCC))与分子生物学测定分析(γ-H2AX 焦点(gH2AX)、基因表达(GE))和基于物理剂量测定的测定分析(电子顺磁共振(EPR)、光或热激励发光(LUM))的性能质量。三个盲样(例如血液、牙釉质或移动电话)暴露于 0、1.2 或 3.5 Gy X 射线参考剂量(240 kVp,1 Gy/min)。这些剂量大致对应于临床上未暴露于低剂量(0-1 Gy)、中剂量(1-2 Gy,预计不会出现严重的急性健康影响)和高剂量(>2 Gy,需要早期密集的医疗护理)的人群。在当前的 RENEB 实验室间比较中,样本被发送到来自 27 个国家的 46 个组织的 86 个专业团队,以进行剂量估计和确定三个临床相关群体。记录了每个实验室和测定分析发送早期粗略报告和更精确报告的时间,只要有可能。使用三种不同的粒度级别分析剂量估计的质量,1. 通过计算正确报告临床相关剂量类别的频率,2. 通过确定推荐用于分诊剂量测定的不确定性间隔内的剂量估计数(<2.5 Gy 时为±0.5 Gy 或>2.5 Gy 时为±1.0 Gy),3. 通过计算与参考剂量的绝对差异(AD)来计算。总共在规定的 6 周期限内提交了 554 份剂量估计值。对于最高优先级处理的样本,对于 GE、gH2AX、LUM、EPR,在收到后的 5-10 小时内报告最早的剂量估计值/类别,对于 DCA、CBMN 则在 2-3 天内报告,对于 FISH 测定则在 6-7 天内报告。对于未辐照的对照样本,除了少数异常值外,所有测定分析都成功地将其分类到正确的临床相关组(0-1 Gy),并分配到分诊不确定性间隔内。对于 3.5 Gy 样本,所有测定分析的正确分类到临床相关组(≥2 Gy)的百分比为 89-100%,除了 gH2AX。对于 1.2 Gy 样本,更难准确地分配到临床相关组,0-50%或 0-48%的估计值被错误地归入最低或最高剂量类别。对于辐照样本,1.2 Gy(29-76%)和 3.5 Gy(17-100%)样本的测定分析之间的分诊不确定性间隔的正确分配差异很大。虽然对于基于细胞遗传学的测定分析观察到向更高剂量的系统偏移,但对于 EPR、FISH 和 GE 测定分析,观察到极端异常值超过参考剂量 2-6 倍。这些异常值与特定检查的材料有关(EPR 测定中的牙釉质,以牙釉质中的克镭表示,但当转换为适当的量,即空气中的克镭时,预计剂量估计值可以在大多数情况下重新计算),与团队的经验水平(FISH)和方法学不确定性(GE)有关。这是第一次 RENEB 实验室间比较,所有事情,从血液采样到辐照和样本运输,都是在同一个机构组织和实现的,涉及多个生物和物理回顾性剂量测定分析。几乎所有的测定分析都可以同样适用于识别未暴露和高暴露个体,以及分配医疗相关群体,后者需要对本练习中模拟的急性辐射情况进行医疗支持。然而,对于一些测定分析,已经观察到极端异常值或剂量估计的系统偏移。在本特刊的各篇专题论文中,将讨论可能的原因。总之,本实验室间比较清楚地表明,需要定期进行练习,以确定研究需求,但也要确定技术问题,并优化未来实验室间比较的设计。

相似文献

1
RENEB Inter-Laboratory Comparison 2021: Inter-Assay Comparison of Eight Dosimetry Assays.
Radiat Res. 2023 Jun 1;199(6):535-555. doi: 10.1667/RADE-22-00207.1.
2
RENEB Inter-Laboratory Comparison 2021: The Gene Expression Assay.
Radiat Res. 2023 Jun 1;199(6):598-615. doi: 10.1667/RADE-22-00206.1.
3
RENEB Inter-Laboratory Comparison 2021: The Dicentric Chromosome Assay.
Radiat Res. 2023 Jun 1;199(6):556-570. doi: 10.1667/RADE-22-00202.1.
4
RENEB Inter-Laboratory Comparison 2021: The Gamma-H2AX Foci Assay.
Radiat Res. 2023 Jun 1;199(6):591-597. doi: 10.1667/RADE-22-00205.1.
5
RENEB Inter-Laboratory Comparison 2021: The Cytokinesis-Block Micronucleus Assay.
Radiat Res. 2023 Jun 1;199(6):571-582. doi: 10.1667/RADE-22-00201.1.
6
RENEB Inter-Laboratory Comparison 2021: The FISH-Based Translocation Assay.
Radiat Res. 2023 Jun 1;199(6):583-590. doi: 10.1667/RADE-22-00203.1.
7
Comparison of established and emerging biodosimetry assays.
Radiat Res. 2013 Aug;180(2):111-9. doi: 10.1667/RR3231.1. Epub 2013 Jul 17.
8
RENEB Inter-Laboratory comparison 2017: limits and pitfalls of ILCs.
Int J Radiat Biol. 2021;97(7):888-905. doi: 10.1080/09553002.2021.1928782. Epub 2021 May 25.
9
What We Have Learned from RENEB Inter-Laboratory Comparisons Since 2012 With Focus on ILC 2021.
Radiat Res. 2023 Jun 1;199(6):616-627. doi: 10.1667/RADE-22-00204.1.

引用本文的文献

本文引用的文献

1
What We Have Learned from RENEB Inter-Laboratory Comparisons Since 2012 With Focus on ILC 2021.
Radiat Res. 2023 Jun 1;199(6):616-627. doi: 10.1667/RADE-22-00204.1.
2
RENEB Inter-Laboratory Comparison 2021: The Cytokinesis-Block Micronucleus Assay.
Radiat Res. 2023 Jun 1;199(6):571-582. doi: 10.1667/RADE-22-00201.1.
3
RENEB Inter-Laboratory Comparison 2021: The Gene Expression Assay.
Radiat Res. 2023 Jun 1;199(6):598-615. doi: 10.1667/RADE-22-00206.1.
4
RENEB Inter-Laboratory Comparison 2021: The FISH-Based Translocation Assay.
Radiat Res. 2023 Jun 1;199(6):583-590. doi: 10.1667/RADE-22-00203.1.
5
RENEB Inter-Laboratory Comparison 2021: The Gamma-H2AX Foci Assay.
Radiat Res. 2023 Jun 1;199(6):591-597. doi: 10.1667/RADE-22-00205.1.
6
RENEB Inter-Laboratory Comparison 2021: The Dicentric Chromosome Assay.
Radiat Res. 2023 Jun 1;199(6):556-570. doi: 10.1667/RADE-22-00202.1.
7
Biodose Tools: an R shiny application for biological dosimetry.
Int J Radiat Biol. 2023;99(9):1378-1390. doi: 10.1080/09553002.2023.2176564. Epub 2023 Feb 7.
8
Comparison of three methods of EPR retrospective dosimetry in watch glass.
Front Public Health. 2022 Nov 17;10:1063769. doi: 10.3389/fpubh.2022.1063769. eCollection 2022.
9
Transcriptional Dynamics of DNA Damage Responsive Genes in Circulating Leukocytes during Radiotherapy.
Cancers (Basel). 2022 May 26;14(11):2649. doi: 10.3390/cancers14112649.
10
Early-response multiple-parameter biodosimetry and dosimetry: risk predictions.
J Radiol Prot. 2021 Dec 6;41(4). doi: 10.1088/1361-6498/ac15df.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验