Suppr超能文献

弥散磁共振成像指标、机器学习和自动纤维束分割可改善脑胶质瘤相关失语症的预测。

Improved prediction of glioma-related aphasia by diffusion MRI metrics, machine learning, and automated fiber bundle segmentation.

机构信息

Department of Neurosurgery, Charité - Universitätsmedizin Berlin, Berlin, Germany.

Cluster of Excellence: "Matters of Activity. Image Space Material", Humboldt University, Berlin, Germany.

出版信息

Hum Brain Mapp. 2023 Aug 15;44(12):4480-4497. doi: 10.1002/hbm.26393. Epub 2023 Jun 15.

Abstract

White matter impairments caused by gliomas can lead to functional disorders. In this study, we predicted aphasia in patients with gliomas infiltrating the language network using machine learning methods. We included 78 patients with left-hemispheric perisylvian gliomas. Aphasia was graded preoperatively using the Aachen aphasia test (AAT). Subsequently, we created bundle segmentations based on automatically generated tract orientation mappings using TractSeg. To prepare the input for the support vector machine (SVM), we first preselected aphasia-related fiber bundles based on the associations between relative tract volumes and AAT subtests. In addition, diffusion magnetic resonance imaging (dMRI)-based metrics [axial diffusivity (AD), apparent diffusion coefficient (ADC), fractional anisotropy (FA), and radial diffusivity (RD)] were extracted within the fiber bundles' masks with their mean, standard deviation, kurtosis, and skewness values. Our model consisted of random forest-based feature selection followed by an SVM. The best model performance achieved 81% accuracy (specificity = 85%, sensitivity = 73%, and AUC = 85%) using dMRI-based features, demographics, tumor WHO grade, tumor location, and relative tract volumes. The most effective features resulted from the arcuate fasciculus (AF), middle longitudinal fasciculus (MLF), and inferior fronto-occipital fasciculus (IFOF). The most effective dMRI-based metrics were FA, ADC, and AD. We achieved a prediction of aphasia using dMRI-based features and demonstrated that AF, IFOF, and MLF were the most important fiber bundles for predicting aphasia in this cohort.

摘要

白质损伤由脑胶质瘤引起可导致功能障碍。在这项研究中,我们使用机器学习方法预测了累及语言网络的脑胶质瘤患者的失语症。我们纳入了 78 例左侧大脑半球颞叶胶质瘤患者。术前使用 Aachen 失语症测试(AAT)对失语症进行分级。随后,我们使用 TractSeg 根据自动生成的束路径图创建束分割。为了为支持向量机(SVM)准备输入,我们首先根据相对束体积与 AAT 子测验之间的关联,基于预选择与失语症相关的纤维束。此外,在纤维束的掩模内提取基于扩散磁共振成像(dMRI)的指标[轴向扩散系数(AD)、表观扩散系数(ADC)、各向异性分数(FA)和径向扩散系数(RD)],并计算其平均值、标准差、峰度和偏度值。我们的模型由基于随机森林的特征选择和 SVM 组成。使用基于 dMRI 的特征、人口统计学数据、肿瘤 WHO 分级、肿瘤位置和相对束体积,最佳模型的性能达到了 81%的准确率(特异性=85%,灵敏度=73%,AUC=85%)。来自弓状束(AF)、纵束(MLF)和下额枕束(IFOF)的特征是最有效的。最有效的基于 dMRI 的指标是 FA、ADC 和 AD。我们使用基于 dMRI 的特征实现了对失语症的预测,并证明在该队列中,AF、IFOF 和 MLF 是预测失语症最重要的纤维束。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/1148/10365236/2ff616ce508b/HBM-44-4480-g006.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验