Memorial Sloan Kettering Cancer Center, New York, NY, USA.
Weill Cornell Medicine, Cornell University, New York, NY, USA.
Nat Chem Biol. 2023 Dec;19(12):1448-1457. doi: 10.1038/s41589-023-01364-9. Epub 2023 Jun 15.
Autophagy is a cellular process with important functions that drive neurodegenerative diseases and cancers. Lysosomal hyperacidification is a hallmark of autophagy. Lysosomal pH is currently measured by fluorescent probes in cell culture, but existing methods do not allow for quantitative, transient or in vivo measurements. In the present study, we developed near-infrared optical nanosensors using organic color centers (covalent sp defects on carbon nanotubes) to measure autophagy-mediated endolysosomal hyperacidification in live cells and in vivo. The nanosensors localize to the lysosomes, where the emission band shifts in response to local pH, enabling spatial, dynamic and quantitative mapping of subtle changes in lysosomal pH. Using the sensor, we observed cellular and intratumoral hyperacidification on administration of mTORC1 and V-ATPase modulators, revealing that lysosomal acidification mirrors the dynamics of S6K dephosphorylation and LC3B lipidation while diverging from p62 degradation. This sensor enables the transient and in vivo monitoring of the autophagy-lysosomal pathway.
自噬是一种具有重要功能的细胞过程,它会导致神经退行性疾病和癌症。溶酶体过度酸化是自噬的一个标志。目前,溶酶体 pH 值是通过细胞培养中的荧光探针来测量的,但现有的方法无法进行定量、瞬时或体内测量。在本研究中,我们使用有机色心(碳纳米管上的共价 sp 缺陷)开发了近红外光学纳米传感器,以测量活细胞和体内自噬介导致的内溶酶体过度酸化。纳米传感器定位于溶酶体,其发射带会响应局部 pH 值发生位移,从而能够对溶酶体 pH 值的细微变化进行空间、动态和定量映射。使用该传感器,我们观察到在 mTORC1 和 V-ATPase 调节剂给药后出现细胞内和肿瘤内的过度酸化,表明溶酶体酸化反映了 S6K 去磷酸化和 LC3B 脂质化的动态变化,而与 p62 降解不同。这种传感器能够对自噬-溶酶体途径进行瞬时和体内监测。