Suppr超能文献

电池电解质中共溶剂失衡导致的过电位:LiPF在碳酸甲乙酯:碳酸乙烯酯中

Overpotential from Cosolvent Imbalance in Battery Electrolytes: LiPF in EMC:EC.

作者信息

Jung Taeho, Wang Andrew A, Monroe Charles W

机构信息

Department of Engineering Science, University of Oxford, Parks Road, Oxford, OX1 3PJ, U.K.

The Faraday Institution, Becquerel Avenue, Harwell Campus, Didcot, OX11 0RA, U.K.

出版信息

ACS Omega. 2023 May 26;8(23):21133-21144. doi: 10.1021/acsomega.3c02088. eCollection 2023 Jun 13.

Abstract

Most liquid lithium-ion-battery electrolytes incorporate cosolvent blends, but the dominant electrochemical transport models adopt a single-solvent approximation, which assumes in part that nonuniform cosolvent ratios do not affect cell voltage. For the popular electrolyte formulation based on ethyl-methyl carbonate (EMC), ethylene carbonate (EC), and LiPF, we perform measurements with fixed-reference concentration cells, finding appreciable liquid-junction potentials when only the cosolvent ratio is polarized. A previously reported junction-potential correlation for EMC:LiPF is extended to cover much of the ternary composition space. We propose a transport model for EMC:EC:LiPF solutions grounded in irreversible thermodynamics. Thermodynamic factors and transference numbers are entwined in liquid-junction potentials, but concentration-cell measurements determine observable material properties we call junction coefficients, which appear in the extended form of Ohm's law that accounts for how composition changes induce voltage drops. Junction coefficients of EC and LiPF are reported and illustrate the extent to which ionic current induces solvent migration.

摘要

大多数液态锂离子电池电解质都含有共溶剂混合物,但主流的电化学传输模型采用单溶剂近似法,该方法部分假设非均匀的共溶剂比例不会影响电池电压。对于基于碳酸甲乙酯(EMC)、碳酸乙烯酯(EC)和LiPF的常见电解质配方,我们使用固定参比浓度电池进行测量,发现仅当共溶剂比例发生极化时就会出现明显的液接电位。先前报道的EMC:LiPF的液接电位相关性被扩展以涵盖大部分三元组成空间。我们提出了一个基于不可逆热力学的EMC:EC:LiPF溶液传输模型。热力学因素和迁移数在液接电位中相互交织,但浓度电池测量确定了我们称为接界系数的可观测材料特性,这些特性出现在考虑成分变化如何引起电压降的扩展形式的欧姆定律中。报告了EC和LiPF的接界系数,并说明了离子电流引起溶剂迁移的程度。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/cde5/10268269/635e0f6bd35d/ao3c02088_0001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验