Álvarez-Codesal Soraya, Faillace Cara A, Garreau Alexandre, Bestion Elvire, Synodinos Alexis D, Montoya José M
Theoretical and Experimental Ecology Station CNRS Moulis France.
Present address: Department of Biological Sciences University of Pittsburgh Pittsburgh Pennsylvania USA.
Ecol Evol. 2023 Jun 13;13(6):e10179. doi: 10.1002/ece3.10179. eCollection 2023 Jun.
Changing temperatures will impact food webs in ways we yet to fully understand. The thermal sensitivities of various physiological and ecological processes differ across organisms and study systems, hindering the generation of accurate predictions. One step towards improving this picture is to acquire a mechanistic understanding of how temperature change impacts trophic interactions before we can scale these insights up to food webs and ecosystems. Here, we implement a mechanistic approach centered on the thermal sensitivity of energetic balances in pairwise consumer-resource interactions, measuring the thermal dependence of energetic gain and loss for two resource and one consumer freshwater species. Quantifying the balance between energy gain and loss, we determined the temperature ranges where the balance decreased for each species in isolation (intraspecific thermal mismatch) and where a mismatch in the balance between consumer and resource species emerged (interspecific thermal mismatch). The latter reveals the temperatures for which consumer and resource energetic balances respond either differently or in the same way, which in turn informs us of the strength of top-down control. We found that warming improved the energetic balance for both resources, but reduces it for the consumer, due to the stronger thermal sensitivity of respiration compared to ingestion. The interspecific thermal mismatch yielded different patterns between the two consumer-resource pairs. In one case, the consumer-resource energetic balance became weaker throughout the temperature gradient, and in the other case it produced a U-shaped response. By also measuring interaction strength for these interaction pairs, we demonstrated the correspondence of interspecific thermal mismatches and interaction strength. Our approach accounts for the energetic traits of both consumer and resource species, which combined produce a good indication of the thermal sensitivity of interaction strength. Thus, this novel approach links thermal ecology with parameters typically explored in food-web studies.
温度变化将以我们尚未完全理解的方式影响食物网。各种生理和生态过程的热敏感性在不同生物和研究系统中存在差异,这阻碍了准确预测的产生。朝着改善这种情况迈出的一步是,在我们能够将这些见解扩展到食物网和生态系统之前,先对温度变化如何影响营养相互作用获得一个机制性的理解。在这里,我们实施了一种以成对消费者 - 资源相互作用中能量平衡的热敏感性为中心的机制方法,测量了两种资源物种和一种消费者淡水物种能量获取和损失的热依赖性。通过量化能量获取与损失之间的平衡,我们确定了每种物种单独时平衡下降的温度范围(种内热不匹配)以及消费者和资源物种之间平衡出现不匹配的温度范围(种间热不匹配)。后者揭示了消费者和资源能量平衡以不同或相同方式响应的温度,这反过来又告诉我们自上而下控制的强度。我们发现,变暖改善了两种资源的能量平衡,但降低了消费者的能量平衡,这是因为呼吸作用的热敏感性比摄食作用更强。种间热不匹配在两个消费者 - 资源对之间产生了不同的模式。在一种情况下,消费者 - 资源能量平衡在整个温度梯度中变弱,而在另一种情况下则产生了U形响应。通过还测量这些相互作用对的相互作用强度,我们证明了种间热不匹配与相互作用强度之间的对应关系。我们的方法考虑了消费者和资源物种的能量特征,这些特征共同很好地表明了相互作用强度的热敏感性。因此,这种新方法将热生态学与食物网研究中通常探索的参数联系起来。