Suppr超能文献

用于脑肿瘤分割的不完整MRI数据的多模态Transformer

Multimodal Transformer of Incomplete MRI Data for Brain Tumor Segmentation.

作者信息

Ting Hsienchih, Liu Manhua

出版信息

IEEE J Biomed Health Inform. 2023 Jun 16;PP. doi: 10.1109/JBHI.2023.3286689.

Abstract

Accurate segmentation of brain tumors plays an important role for clinical diagnosis and treatment. Multimodal magnetic resonance imaging (MRI) can provide rich and complementary information for accurate brain tumor segmentation. However, some modalities may be absent in clinical practice. It is still challenging to integrate the incomplete multimodal MRI data for accurate segmentation of brain tumors. In this paper, we propose a brain tumor segmentation method based on multimodal transformer network with incomplete multimodal MRI data. The network is based on U-Net architecture consisting of modality specific encoders, multimodal transformer and multimodal shared-weight decoder. First, a convolutional encoder is built to extract the specific features of each modality. Then, a multimodal transformer is proposed to model the correlations of multimodal features and learn the features of missing modalities. Finally, a multimodal shared-weight decoder is proposed to progressively aggregate the multimodal and multi-level features with spatial and channel self-attention modules for brain tumor segmentation. A missing-full complementary learning strategy is used to explore the latent correlation between the missing and full modalities for feature compensation. For evaluation, our method is tested on the multimodal MRI data from BraTS 2018, BraTS 2019 and BraTS 2020 datasets. The extensive results demonstrate that our method outperforms the state-of-the-art methods for brain tumor segmentation on most subsets of missing modalities.

摘要

脑肿瘤的精确分割对临床诊断和治疗起着重要作用。多模态磁共振成像(MRI)可为脑肿瘤的精确分割提供丰富且互补的信息。然而,在临床实践中某些模态可能缺失。整合不完整的多模态MRI数据以实现脑肿瘤的精确分割仍然具有挑战性。在本文中,我们提出了一种基于多模态Transformer网络的脑肿瘤分割方法,用于处理不完整的多模态MRI数据。该网络基于U-Net架构,由模态特定编码器、多模态Transformer和多模态共享权重解码器组成。首先,构建一个卷积编码器来提取每个模态的特定特征。然后,提出一个多模态Transformer来建模多模态特征的相关性并学习缺失模态的特征。最后,提出一个多模态共享权重解码器,通过空间和通道自注意力模块逐步聚合多模态和多层次特征以进行脑肿瘤分割。采用缺失-完整互补学习策略来探索缺失模态和完整模态之间的潜在相关性以进行特征补偿。为了进行评估,我们的方法在来自BraTS 2018、BraTS 2019和BraTS 2020数据集的多模态MRI数据上进行了测试。广泛的结果表明,在大多数缺失模态子集上,我们的方法在脑肿瘤分割方面优于当前的先进方法。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验