School of Mathematics and Statistics, Huazhong University of Science and Technology, Wuhan 430074, China.
Institute of Interdisciplinary Research for Mathematics and Applied Science, Huazhong University of Science and Technology, Wuhan 430074, China.
Phys Rev E. 2023 May;107(5-2):055305. doi: 10.1103/PhysRevE.107.055305.
In this paper, we first develop a fourth-order multiple-relaxation-time lattice Boltzmann (MRT-LB) model for the one-dimensional convection-diffusion equation (CDE) with the constant velocity and diffusion coefficient, where the D1Q3 (three discrete velocities in one-dimensional space) lattice structure is used. We also perform the Chapman-Enskog analysis to recover the CDE from the MRT-LB model. Then an explicit four-level finite-difference (FLFD) scheme is derived from the developed MRT-LB model for the CDE. Through the Taylor expansion, the truncation error of the FLFD scheme is obtained, and at the diffusive scaling, the FLFD scheme can achieve the fourth-order accuracy in space. After that, we present a stability analysis and derive the same stability condition for the MRT-LB model and FLFD scheme. Finally, we perform some numerical experiments to test the MRT-LB model and FLFD scheme, and the numerical results show that they have a fourth-order convergence rate in space, which is consistent with our theoretical analysis.
在本文中,我们首先为具有常速度和扩散系数的一维对流扩散方程(CDE)开发了一个四阶多重松弛时间格子玻尔兹曼(MRT-LB)模型,其中使用了 D1Q3(一维空间中的三个离散速度)晶格结构。我们还进行了Chapman-Enskog 分析,从 MRT-LB 模型中恢复 CDE。然后,从开发的 MRT-LB 模型中为 CDE 推导出显式四阶有限差分(FLFD)方案。通过泰勒展开,得到了 FLFD 方案的截断误差,在扩散尺度下,FLFD 方案可以在空间上达到四阶精度。之后,我们进行了稳定性分析,并为 MRT-LB 模型和 FLFD 方案推导出相同的稳定性条件。最后,我们进行了一些数值实验来测试 MRT-LB 模型和 FLFD 方案,数值结果表明它们在空间上具有四阶收敛速度,与我们的理论分析一致。