Horizon Omics Biotech Limited, E3, North Lake Science Park B, Changchun, Jilin Province 13000, China.
R. Ken Coit College of Pharmacy, 1703 E. Mabel St., University of Arizona, Tucson, AZ 85724, United States; Reglagene, 3320 N. Campbell Ave., Suite 200, Tucson, AZ 85719, United States.
Bioorg Med Chem Lett. 2023 Jul 15;91:129384. doi: 10.1016/j.bmcl.2023.129384. Epub 2023 Jun 18.
DNA G-quadruplex (G4) structures are enriched at human genome loci critical for cancer development, such as in oncogene promoters, telomeres, and rDNA. Medicinal chemistry approaches to developing drugs that target G4 structures date back to over 20 years ago. Small-molecule drugs were designed to target and stabilize G4 structures, thereby blocking replication and transcription, resulting in cancer cell death. CX-3543 (Quarfloxin) was the first G4-targeting drug to enter clinical trials in 2005; however, because of the lack of efficacy, it was withdrawn from Phase 2 clinical trials. Efficacy problems also occurred in the clinical trial of patients with advanced hematologic malignancies using CX-5461 (Pidnarulex), another G4-stabilizing drug. Only after the discovery of synthetic lethal (SL) interactions between Pidnarulex and the BRCA1/2-mediated homologous recombination (HR) pathway in 2017, promising clinical efficacy was achieved. In this case, Pidnarulex was used in a clinical trial to treat solid tumors deficient in BRCA2 and PALB2. The history of the development of Pidnarulex highlights the importance of SL in identifying cancer patients responsive to G4-targeting drugs. In order to identify additional cancer patients responsive to Pidnarulex, several genetic interaction screens have been performed with Pidnarulex and other G4-targeting drugs using human cancer cell lines or C. elegans. Screening results confirmed the synthetic lethal interaction between G4 stabilizers and HR genes and also uncovered other novel genetic interactions, including genes in other DNA damage repair pathways and genes in transcription, epigenetic, and RNA processing deficiencies. In addition to patient identification, synthetic lethality is also important for the design of drug combination therapy for G4-targeting drugs in order to achieve better clinical outcomes.
DNA 四链体 (G4) 结构在人类基因组中富含关键的癌症发展区域,如癌基因启动子、端粒和 rDNA。开发针对 G4 结构的药物的药物化学方法可以追溯到 20 多年前。小分子药物被设计用于靶向和稳定 G4 结构,从而阻断复制和转录,导致癌细胞死亡。CX-3543(Quarfloxin)是第一种于 2005 年进入临床试验的靶向 G4 的药物;然而,由于缺乏疗效,它已从第 2 期临床试验中撤回。另一种 G4 稳定药物 CX-5461(Pidnarulex)在治疗晚期血液恶性肿瘤患者的临床试验中也出现了疗效问题。直到 2017 年发现 Pidnarulex 与 BRCA1/2 介导的同源重组(HR)途径之间的合成致死(SL)相互作用,才取得了有希望的临床疗效。在这种情况下,Pidnarulex 被用于治疗 BRCA2 和 PALB2 缺失的实体瘤的临床试验中。Pidnarulex 的发展历史强调了 SL 在确定对 G4 靶向药物有反应的癌症患者中的重要性。为了确定对 Pidnarulex 有反应的其他癌症患者,已经使用 Pidnarulex 和其他 G4 靶向药物在人类癌细胞系或秀丽隐杆线虫中进行了几种遗传相互作用筛选。筛选结果证实了 G4 稳定剂与 HR 基因之间的合成致死相互作用,还发现了其他新的遗传相互作用,包括其他 DNA 损伤修复途径中的基因和转录、表观遗传和 RNA 加工缺陷中的基因。除了患者识别外,合成致死性对于设计针对 G4 靶向药物的药物联合治疗也很重要,以实现更好的临床结果。