Department of Chemistry, University of Pennsylvania, Philadelphia, Pennsylvania 19104, United States.
Department of Electrical and Systems Engineering, University of Pennsylvania, Philadelphia, Pennsylvania 19104, United States.
Acc Chem Res. 2023 Jul 4;56(13):1791-1802. doi: 10.1021/acs.accounts.3c00147. Epub 2023 Jun 21.
ConspectusColloidal nanocrystals (NCs) are composed of inorganic cores and organic or inorganic ligand shells and serve as building blocks of NC assemblies. Metal and semiconductor NCs are well known for the size-dependent physical properties of their cores. The large NC surface-to-volume ratio and the space between NCs in assemblies places significant importance on the composition of the NC surface and ligand shell. Nonaqueous colloidal NC syntheses use relatively long organic ligands to control NC size and uniformity during growth and to prepare stable NC dispersions. However, these ligands create large interparticle distances that dilute the metal and semiconductor NC properties of their assemblies. In this Account, we describe postsynthesis chemical treatments to engineer the NC surface and design the optical and electronic properties of NC assemblies. In metal NC assemblies, compact ligand exchange reduces the interparticle distance and drives an insulator-to-metal transition tuning the dc resistivity over a 10 range and the real part of the optical dielectric function from positive to negative across the visible-to-IR region. Juxtaposing NC and bulk metal thin films in bilayers allows the differential chemical and thermal addressability of the NC surface to be exploited in device fabrication. Ligand exchange and thermal annealing densifies the NC layer, creating interfacial misfit strain that triggers folding of the bilayers and is used to fabricate, with only one lithography step, large-area 3D chiral metamaterials. In semiconductor NC assemblies, chemical treatments such as ligand exchange, doping, and cation exchange control the interparticle distance and composition to add impurities, tailor stoichiometry, or make entirely new compounds. These treatments are employed in longer studied II-VI and IV-VI materials and are being developed as interest in III-V and I-III-VI NC materials grows. NC surface engineering is used to design NC assemblies with tailored carrier energy, type, concentration, mobility, and lifetime. Compact ligand exchange increases the coupling between NCs but can introduce intragap states that scatter and reduce the lifetime of carriers. Hybrid ligand exchange with two different chemistries can enhance the mobility-lifetime product. Doping increases carrier concentration, shifts the Fermi energy, and increases carrier mobility, creating n- and p-type building blocks for optoelectronic and electronic devices and circuits. Surface engineering of semiconductor NC assemblies is also important to modify device interfaces to allow the stacking and patterning of NC layers and to realize excellent device performance. It is used to construct NC-integrated circuits, exploiting the library of metal, semiconductor, and insulator NCs, to achieve all-NC, solution-fabricated transistors.
概述胶体纳米晶体(NCs)由无机核和有机或无机配体壳组成,可用作 NC 组装体的构建块。金属和半导体 NC 因其核的尺寸依赖性物理性质而广为人知。较大的 NC 表面积与组装体中 NC 之间的空间使 NC 表面和配体壳的组成变得非常重要。非水胶体 NC 合成使用相对较长的有机配体来控制 NC 在生长过程中的尺寸和均匀性,并制备稳定的 NC 分散体。然而,这些配体形成了较大的颗粒间距离,从而稀释了金属和半导体 NC 组装体的性质。在本报告中,我们描述了后合成化学处理方法,用于对 NC 表面进行工程改造,并设计 NC 组装体的光学和电子性质。在金属 NC 组装体中,紧密的配体交换会减小颗粒间距离,并导致从绝缘体到金属的转变,从而在 10 的范围内调节直流电阻率,并在可见到红外区域使光学介电函数的实部从正变为负。将 NC 和体相金属薄膜并列在双层膜中,可以利用 NC 表面的差异化学和热可寻址性来制造器件。配体交换和热退火使 NC 层致密化,产生界面失配应变,引发双层膜的折叠,并用于仅通过一个光刻步骤制造大面积的 3D 手性超材料。在半导体 NC 组装体中,配体交换、掺杂和阳离子交换等化学处理方法可以控制颗粒间距离和组成,以添加杂质、调整化学计量比或形成全新的化合物。这些处理方法已应用于研究时间较长的 II-VI 和 IV-VI 材料中,并且随着 III-V 和 I-III-VI NC 材料研究兴趣的增加,这些处理方法也在不断发展。NC 表面工程用于设计具有定制载流子能量、类型、浓度、迁移率和寿命的 NC 组装体。紧密的配体交换增加了 NC 之间的耦合,但可能会引入带隙态,从而散射并降低载流子的寿命。使用两种不同化学性质的混合配体交换可以提高迁移率-寿命乘积。掺杂会增加载流子浓度、移动费米能级并提高载流子迁移率,从而为光电和电子器件和电路制造 n 型和 p 型构建块。半导体 NC 组装体的表面工程对于修饰器件界面也很重要,这可以允许 NC 层的堆叠和图案化,并实现出色的器件性能。它用于构建 NC 集成电路,利用金属、半导体和绝缘体 NC 的库,实现全 NC、溶液制造的晶体管。