Department of Physiology, College of Medicine, University of Tennessee Health Science Center, Memphis, TN 38163, USA.
Function (Oxf). 2023 May 4;4(4):zqad022. doi: 10.1093/function/zqad022. eCollection 2023.
In patients with rhabdomyolysis, the overwhelming release of myoglobin into the circulation is the primary cause of kidney injury. Myoglobin causes direct kidney injury as well as severe renal vasoconstriction. An increase in renal vascular resistance (RVR) results in renal blood flow (RBF) and glomerular filtration rate (GFR) reduction, tubular injury, and acute kidney injury (AKI). The mechanisms that underlie rhabdomyolysis-induced AKI are not fully understood but may involve the local production of vasoactive mediators in the kidney. Studies have shown that myoglobin stimulates endothelin-1 (ET-1) production in glomerular mesangial cells. Circulating ET-1 is also increased in rats subjected to glycerol-induced rhabdomyolysis. However, the upstream mechanisms of ET-1 production and downstream effectors of ET-1 actions in rhabdomyolysis-induced AKI remain unclear. Vasoactive ET-1 is generated by ET converting enzyme 1 (ECE-1)-induced proteolytic processing of inactive big ET to biologically active peptides. The downstream ion channel effectors of ET-1-induced vasoregulation include the transient receptor potential cation channel, subfamily C member 3 (TRPC3). This study demonstrates that glycerol-induced rhabdomyolysis in Wistar rats promotes ECE-1-dependent ET-1 production, RVR increase, GFR decrease, and AKI. Rhabdomyolysis-induced increases in RVR and AKI in the rats were attenuated by post-injury pharmacological inhibition of ECE-1, ET receptors, and TRPC3 channels. CRISPR/Cas9-mediated knockout of TRPC3 channels attenuated ET-1-induced renal vascular reactivity and rhabdomyolysis-induced AKI. These findings suggest that ECE-1-driven ET-1 production and downstream activation of TRPC3-dependent renal vasoconstriction contribute to rhabdomyolysis-induced AKI. Hence, post-injury inhibition of ET-1-mediated renal vasoregulation may provide therapeutic targets for rhabdomyolysis-induced AKI.
在横纹肌溶解症患者中,肌红蛋白大量释放到循环中是导致肾损伤的主要原因。肌红蛋白不仅直接导致肾损伤,还会引起严重的肾血管收缩。肾血管阻力(RVR)增加会导致肾血流量(RBF)和肾小球滤过率(GFR)降低、肾小管损伤和急性肾损伤(AKI)。横纹肌溶解症引起 AKI 的机制尚未完全阐明,但可能涉及肾脏中血管活性介质的局部产生。研究表明,肌红蛋白刺激肾小球系膜细胞产生内皮素-1(ET-1)。甘油诱导的横纹肌溶解症大鼠循环中的 ET-1 也增加。然而,ET-1 产生的上游机制和 ET-1 作用的下游效应物在横纹肌溶解症引起的 AKI 中仍不清楚。血管活性 ET-1 由 ET 转化酶 1(ECE-1)诱导的无活性大 ET 蛋白水解加工产生。ET-1 诱导的血管调节的下游离子通道效应物包括瞬时受体电位阳离子通道,亚家族 C 成员 3(TRPC3)。本研究表明,Wistar 大鼠甘油诱导的横纹肌溶解症促进了 ECE-1 依赖性 ET-1 产生、RVR 增加、GFR 降低和 AKI。横纹肌溶解症大鼠的 RVR 和 AKI 增加在损伤后通过药理学抑制 ECE-1、ET 受体和 TRPC3 通道得到缓解。TRPC3 通道的 CRISPR/Cas9 介导敲除减轻了 ET-1 诱导的肾血管反应性和横纹肌溶解症引起的 AKI。这些发现表明,ECE-1 驱动的 ET-1 产生和下游激活 TRPC3 依赖性肾血管收缩导致横纹肌溶解症引起的 AKI。因此,损伤后抑制 ET-1 介导的肾血管调节可能为横纹肌溶解症引起的 AKI 提供治疗靶点。