Department of Biological Sciences, Virginia Tech, Virginia Tech, Blacksburg, VA 24061.
BIOTRANS Graduate Program, Virginia Tech, Virginia Tech, Blacksburg, VA 24061.
Mol Biol Cell. 2023 Aug 1;34(9):ar90. doi: 10.1091/mbc.E22-10-0485. Epub 2023 Jun 21.
During mitosis, equal partitioning of chromosomes into two daughter cells requires assembly of a bipolar mitotic spindle. Because the spindle poles are each organized by a centrosome in animal cells, centrosome defects can lead to monopolar or multipolar spindles. However, the cell can effectively recover the bipolar spindle by separating the centrosomes in monopolar spindles and clustering them in multipolar spindles. To interrogate how a cell can separate and cluster centrosomes as needed to form a bipolar spindle, we developed a biophysical model, based on experimental data, which uses effective potential energies to describe key mechanical forces driving centrosome movements during spindle assembly. Our model identified general biophysical factors crucial for robust bipolarization of spindles that start as monopolar or multipolar. These factors include appropriate force fluctuation between centrosomes, balance between repulsive and attractive forces between centrosomes, exclusion of the centrosomes from the cell center, proper cell size and geometry, and a limited centrosome number. Consistently, we found experimentally that bipolar centrosome clustering is promoted as mitotic cell aspect ratio and volume decrease in tetraploid cancer cells. Our model provides mechanistic explanations for many more experimental phenomena and a useful theoretical framework for future studies of spindle assembly.
在有丝分裂过程中,染色体均等分配到两个子细胞中需要组装一个两极纺锤体。由于动物细胞中的纺锤体极各由一个中心体组织,因此中心体缺陷会导致单极或多极纺锤体。然而,细胞可以通过将单极纺锤体中的中心体分离并将其在多极纺锤体中聚集来有效地恢复两极纺锤体。为了研究细胞如何根据需要分离和聚集中心体以形成两极纺锤体,我们基于实验数据开发了一个生物物理模型,该模型使用有效势能来描述在纺锤体组装过程中驱动中心体运动的关键力学力。我们的模型确定了对于从单极或多极开始的稳健两极化至关重要的一般生物物理因素。这些因素包括中心体之间适当的力波动、中心体之间排斥力和吸引力之间的平衡、将中心体排除在细胞中心之外、适当的细胞大小和形状,以及有限的中心体数量。一致地,我们实验发现,随着四倍体癌细胞的有丝分裂细胞纵横比和体积减小,两极中心体聚类得到促进。我们的模型为许多更多的实验现象提供了机械解释,并为未来的纺锤体组装研究提供了有用的理论框架。