Tian Lu, Zou Liwen, Yang Xiaoping
Department of Mathematics, Nanjing University, Nanjing, 210093, People's Republic of China.
Department of Mathematics, Nanjing University of Science and Technology Zijin College, Nanjing, 210023, People's Republic of China.
Phys Med Biol. 2023 Jul 7;68(14). doi: 10.1088/1361-6560/ace099.
In this paper, we propose a two-stage data-model driven pancreas segmentation method that combines a 3D convolution neural network with adaptive pointwise parametric hybrid variational model embedding the directional and magnitude information of the boundary intensity gradient. Firstly, nnU-net is used to segment the entire abdominal CT image with the aim of obtaining the region of the interest of pancreas. Secondly, an adaptive pointwise parametric variational model with a new edge term containing the directional and magnitude information of the boundary intensity gradient is used to refine the predicted results from CNN. Although CNN is good at extracting texture information, it does not capture weak boundary information very well. In order to well acquire more weak boundary information of the pancreas, we utilize not only the magnitude of the gradient, but also the directional information of the boundary intensity gradient to obtain more accurate results in the new edge term. In addition, the probability value for each pixel obtained by calculating the softmax function is exploited twice. Actually, it is applied firstly to generate the binary map as the initial contour of the variational model and then to design the adaptive pointwise weight parameters of internal and external area terms of the variational model rather than constants. It not only eliminates the trouble of manual parameter adjustment, but also, most importantly, provides a more accurate pointwise evolutionary trend of the level set contour, i.e. determine the tendency of the level set contour to pointwisely contract inward or expand outward. Our method is evaluated on three public datasets and outperformed the state-of-the-art pancreas segmentation methods. Accurate pancreatic segmentation allows for more reliable quantitative analysis of local morphological changes in the pancreas, which can assist in early diagnosis and treatment planning.
在本文中,我们提出了一种两阶段的数据模型驱动的胰腺分割方法,该方法将三维卷积神经网络与嵌入边界强度梯度方向和幅度信息的自适应逐点参数混合变分模型相结合。首先,使用nnU-net对整个腹部CT图像进行分割,以获得胰腺的感兴趣区域。其次,使用具有包含边界强度梯度方向和幅度信息的新边缘项的自适应逐点参数变分模型来细化卷积神经网络的预测结果。虽然卷积神经网络擅长提取纹理信息,但它不能很好地捕捉弱边界信息。为了更好地获取胰腺的更多弱边界信息,我们不仅利用梯度的幅度,还利用边界强度梯度的方向信息,以便在新的边缘项中获得更准确的结果。此外,通过计算softmax函数得到的每个像素的概率值被使用了两次。实际上,它首先被应用于生成二值图作为变分模型的初始轮廓,然后被用于设计变分模型内部和外部区域项的自适应逐点权重参数而非常数。这不仅消除了手动调整参数的麻烦,更重要的是提供了更准确的水平集轮廓逐点演化趋势,即确定水平集轮廓逐点向内收缩或向外扩张的趋势。我们的方法在三个公共数据集上进行了评估,并且优于当前最先进的胰腺分割方法。精确的胰腺分割能够对胰腺局部形态变化进行更可靠的定量分析,这有助于早期诊断和治疗规划。