Koehle Allison P, Brumwell Stephanie L, Seto Emily P, Lynch Anne M, Urbaniak Camilla
Department of Plant Science, Pennsylvania State University, University Park, PA, USA.
Department of Biochemistry, Schulich School of Medicine and Dentistry, The University of Western Ontario, London, ON, Canada.
NPJ Microgravity. 2023 Jun 21;9(1):47. doi: 10.1038/s41526-023-00285-0.
With the construction of the International Space Station, humans have been continuously living and working in space for 22 years. Microbial studies in space and other extreme environments on Earth have shown the ability for bacteria and fungi to adapt and change compared to "normal" conditions. Some of these changes, like biofilm formation, can impact astronaut health and spacecraft integrity in a negative way, while others, such as a propensity for plastic degradation, can promote self-sufficiency and sustainability in space. With the next era of space exploration upon us, which will see crewed missions to the Moon and Mars in the next 10 years, incorporating microbiology research into planning, decision-making, and mission design will be paramount to ensuring success of these long-duration missions. These can include astronaut microbiome studies to protect against infections, immune system dysfunction and bone deterioration, or biological in situ resource utilization (bISRU) studies that incorporate microbes to act as radiation shields, create electricity and establish robust plant habitats for fresh food and recycling of waste. In this review, information will be presented on the beneficial use of microbes in bioregenerative life support systems, their applicability to bISRU, and their capability to be genetically engineered for biotechnological space applications. In addition, we discuss the negative effect microbes and microbial communities may have on long-duration space travel and provide mitigation strategies to reduce their impact. Utilizing the benefits of microbes, while understanding their limitations, will help us explore deeper into space and develop sustainable human habitats on the Moon, Mars and beyond.
随着国际空间站的建设,人类已经在太空中持续生活和工作了22年。对太空以及地球上其他极端环境中的微生物研究表明,与“正常”条件相比,细菌和真菌具有适应和变化的能力。其中一些变化,如生物膜形成,可能会对宇航员健康和航天器完整性产生负面影响,而其他变化,如塑料降解倾向,则可以促进太空的自给自足和可持续性。随着我们迎来太空探索的新时代,未来10年内将进行载人登月和火星任务,将微生物学研究纳入规划、决策和任务设计对于确保这些长期任务的成功至关重要。这些研究可以包括宇航员微生物组研究,以预防感染、免疫系统功能障碍和骨质恶化,或者生物原位资源利用(bISRU)研究,即利用微生物作为辐射屏蔽、发电并建立强大的植物栖息地以提供新鲜食物和废物回收。在这篇综述中,将介绍微生物在生物再生生命支持系统中的有益用途、它们在bISRU中的适用性,以及它们通过基因工程用于生物技术太空应用的能力。此外,我们还将讨论微生物和微生物群落可能对长期太空旅行产生的负面影响,并提供减轻其影响的策略。利用微生物的益处,同时了解其局限性,将有助于我们更深入地探索太空,并在月球、火星及其他星球上开发可持续的人类栖息地。