Suppr超能文献

利用隐私保护的网络特征预测商户未来表现。

Predicting merchant future performance using privacy-safe network-based features.

机构信息

MIT Connection Science, Institute for Data, Systems, and Society, Massachusetts Institute of Technology, Cambridge, MA, 02139, USA.

Faculty of Engineering and Natural Sciences, Sabanci University, Istanbul, Turkey.

出版信息

Sci Rep. 2023 Jun 21;13(1):10073. doi: 10.1038/s41598-023-36624-0.

Abstract

Small and Medium-sized Enterprises play a significant role in most economies by contributing to job creation and economic growth. A majority of such merchants rely on business financing, and thus, financial institutions and investors need to assess their performance before making decisions on business loans. However, current methods of predicting merchants' future performance involve their private internal information, such as revenue and customer base, which cannot be shared without potentially exposing critical information. To address this problem, we first propose a novel approach to predicting merchants' future performance using credit card transaction data. Specifically, we construct a merchant network, regarding customers as bridges between merchants, and extract features from the constructed network structure for prediction purposes. Our study results demonstrate that the performance of machine learning models with features extracted from our proposed network is comparable to those with conventional revenue- and customer-based features, while maintaining higher privacy levels when shared with third-party organizations. Our approach offers a practical solution to privacy concerns over data and information required for merchants' performance prediction, enabling safe data-sharing among financial institutions and investors, helping them make more informed decisions on allocating their financial resources while ensuring that merchants' sensitive information is kept confidential.

摘要

中小企业在大多数经济体中发挥着重要作用,为创造就业机会和促进经济增长做出了贡献。大多数此类商家依赖商业融资,因此,金融机构和投资者在决定商业贷款前需要评估其绩效。然而,当前预测商家未来绩效的方法涉及他们的私人内部信息,例如收入和客户群,如果不暴露关键信息,这些信息是无法共享的。为了解决这个问题,我们首先提出了一种使用信用卡交易数据预测商家未来绩效的新方法。具体来说,我们构建了一个商家网络,将客户视为商家之间的桥梁,并从构建的网络结构中提取特征用于预测。我们的研究结果表明,从我们提出的网络中提取特征的机器学习模型的性能与基于传统收入和客户的特征的模型相当,同时在与第三方组织共享时保持更高的隐私级别。我们的方法为商家绩效预测所需的数据和信息的隐私问题提供了一个实际的解决方案,使金融机构和投资者能够在确保商家敏感信息保密的同时,安全地共享数据,帮助他们在分配财务资源时做出更明智的决策。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/c575/10284870/f84bcd4c8a93/41598_2023_36624_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验