Suppr超能文献

一种基于多核多尺度学习的深度集成模型用于预测非小细胞肺癌的复发

A multi-kernel and multi-scale learning based deep ensemble model for predicting recurrence of non-small cell lung cancer.

作者信息

Kim Gihyeon, Park Young Mi, Yoon Hyun Jung, Choi Jang-Hwan

机构信息

Department of Computational Medicine, Graduate Program in System Health Science and Engineering, Ewha Womans University, Seoul, South Korea.

Department of Molecular Medicine, College of Medicine, Ewha Womans University, Seoul, South Korea.

出版信息

PeerJ Comput Sci. 2023 May 2;9:e1311. doi: 10.7717/peerj-cs.1311. eCollection 2023.

Abstract

Predicting recurrence in patients with non-small cell lung cancer (NSCLC) before treatment is vital for guiding personalized medicine. Deep learning techniques have revolutionized the application of cancer informatics, including lung cancer time-to-event prediction. Most existing convolutional neural network (CNN) models are based on a single two-dimensional (2D) computational tomography (CT) image or three-dimensional (3D) CT volume. However, studies have shown that using multi-scale input and fusing multiple networks provide promising performance. This study proposes a deep learning-based ensemble network for recurrence prediction using a dataset of 530 patients with NSCLC. This network assembles 2D CNN models of various input slices, scales, and convolutional kernels, using a deep learning-based feature fusion model as an ensemble strategy. The proposed framework is uniquely designed to benefit from (i) multiple 2D in-plane slices to provide more information than a single central slice, (ii) multi-scale networks and multi-kernel networks to capture the local and peritumoral features, (iii) ensemble design to integrate features from various inputs and model architectures for final prediction. The ensemble of five 2D-CNN models, three slices, and two multi-kernel networks, using 5 × 5 and 6 × 6 convolutional kernels, achieved the best performance with an accuracy of 69.62%, area under the curve (AUC) of 72.5%, F1 score of 70.12%, and recall of 70.81%. Furthermore, the proposed method achieved competitive results compared with the 2D and 3D-CNN models for cancer outcome prediction in the benchmark studies. Our model is also a potential adjuvant treatment tool for identifying NSCLC patients with a high risk of recurrence.

摘要

在非小细胞肺癌(NSCLC)患者治疗前预测复发对于指导个性化医疗至关重要。深度学习技术彻底改变了癌症信息学的应用,包括肺癌事件发生时间预测。现有的大多数卷积神经网络(CNN)模型基于单个二维(2D)计算机断层扫描(CT)图像或三维(3D)CT容积。然而,研究表明,使用多尺度输入并融合多个网络可提供良好的性能。本研究使用530例NSCLC患者的数据集,提出了一种基于深度学习的集成网络用于复发预测。该网络使用基于深度学习的特征融合模型作为集成策略,将各种输入切片、尺度和卷积核的2D CNN模型进行整合。所提出的框架经过独特设计,受益于:(i)多个2D平面内切片,以提供比单个中心切片更多的信息;(ii)多尺度网络和多核网络,以捕获局部和肿瘤周围特征;(iii)集成设计,将来自各种输入和模型架构的特征进行整合以进行最终预测。由五个2D-CNN模型、三个切片和两个多核网络组成的集成,使用5×5和6×6卷积核,取得了最佳性能,准确率为69.62%,曲线下面积(AUC)为72.5%,F1分数为70.12%,召回率为70.81%。此外,在基准研究中,与用于癌症结局预测的2D和3D-CNN模型相比,所提出的方法取得了具有竞争力的结果。我们的模型也是识别具有高复发风险的NSCLC患者的潜在辅助治疗工具。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/da7c/10280639/9acb3ade31c2/peerj-cs-09-1311-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验