Physics Department, Stanford University, Stanford, CA 94305, USA.
James H. Clark Center, Stanford University, Stanford, CA 94305, USA.
Science. 2023 Jun 23;380(6651):1270-1275. doi: 10.1126/science.adf9725. Epub 2023 Jun 22.
The development of voltage-sensitive fluorescent probes suggests fluorescence lifetime as a promising readout for electrical activity in biological systems. Existing approaches fail to achieve the speed and sensitivity required for voltage imaging in neuroscience applications. We demonstrated that wide-field electro-optic fluorescence lifetime imaging microscopy (EO-FLIM) allows lifetime imaging at kilohertz frame-acquisition rates, spatially resolving action potential propagation and subthreshold neural activity in live adult . Lifetime resolutions of <5 picoseconds at 1 kilohertz were achieved for single-cell voltage recordings. Lifetime readout is limited by photon shot noise, and the method provides strong rejection of motion artifacts and technical noise sources. Recordings revealed local transmembrane depolarizations, two types of spikes with distinct fluorescence lifetimes, and phase locking of spikes to an external mechanical stimulus.
电压敏感荧光探针的发展表明荧光寿命是生物系统电活动一种很有前途的读出方式。现有的方法无法在神经科学应用中实现电压成像所需的速度和灵敏度。我们证明了宽场电光荧光寿命成像显微镜(EO-FLIM)允许以千赫兹帧率进行寿命成像,在活体成年动物中空间分辨动作电位传播和亚阈值神经活动。对于单细胞电压记录,实现了<5 皮秒的寿命分辨率为 1 千赫兹。寿命读出受光子散粒噪声限制,该方法对运动伪影和技术噪声源具有很强的抑制作用。记录显示局部跨膜去极化、两种具有不同荧光寿命的尖峰以及尖峰与外部机械刺激的相位锁定。