Department of Chemistry, Massachusetts Institute of Technology, Cambridge, MA, USA.
Research Laboratory of Electronics, Massachusetts Institute of Technology, Cambridge, MA, USA.
Nat Biotechnol. 2024 Jun;42(6):892-904. doi: 10.1038/s41587-023-01833-5. Epub 2023 Jun 22.
Progress in understanding brain-viscera interoceptive signaling is hindered by a dearth of implantable devices suitable for probing both brain and peripheral organ neurophysiology during behavior. Here we describe multifunctional neural interfaces that combine the scalability and mechanical versatility of thermally drawn polymer-based fibers with the sophistication of microelectronic chips for organs as diverse as the brain and the gut. Our approach uses meters-long continuous fibers that can integrate light sources, electrodes, thermal sensors and microfluidic channels in a miniature footprint. Paired with custom-fabricated control modules, the fibers wirelessly deliver light for optogenetics and transfer data for physiological recording. We validate this technology by modulating the mesolimbic reward pathway in the mouse brain. We then apply the fibers in the anatomically challenging intestinal lumen and demonstrate wireless control of sensory epithelial cells that guide feeding behaviors. Finally, we show that optogenetic stimulation of vagal afferents from the intestinal lumen is sufficient to evoke a reward phenotype in untethered mice.
理解脑-内脏内脏感觉信号的进展受到阻碍,因为缺乏适合在行为期间探测大脑和外周器官神经生理学的可植入设备。在这里,我们描述了多功能神经接口,该接口将热拉伸聚合物基纤维的可扩展性和机械多功能性与微电子芯片的复杂性结合在一起,适用于从大脑到肠道等各种器官。我们的方法使用米长的连续纤维,可以在微型引脚上集成光源、电极、热敏传感器和微流控通道。与定制制造的控制模块配合使用,这些纤维可无线传输用于光遗传学的光,并传输用于生理记录的数据。我们通过调节小鼠大脑中的中脑边缘奖励途径来验证这项技术。然后,我们将纤维应用于解剖学上具有挑战性的肠道腔,并证明可以无线控制引导进食行为的感觉上皮细胞。最后,我们表明,从肠道腔发出的迷走传入纤维的光遗传学刺激足以在无束缚的小鼠中引起奖励表型。