Suppr超能文献

基于内建电场驱动的过渡金属硫化物异质结光催化剂的构建,用于可见光下高效析氢

Construction of a transition-metal sulfide heterojunction photocatalyst driven by a built-in electric field for efficient hydrogen evolution under visible light.

作者信息

Zhang Weibo, Xu Qiuyue, Tang Xiaoqiu, Jiang Hualin, Shi Jinwen, Fominski Vyacheslav, Bai Yingchen, Chen Pinghua, Zou Jianping

机构信息

Key Laboratory of Jiangxi Province for Persistent Pollutants Control and Resources Recycle, Nanchang Hangkong University, Nanchang 330063, China; Key Laboratory of Poyang Lake Environment and Resource Utilization (Ministry of Education), School of Resources & Environment, Nanchang University, Nanchang 330031, China.

Key Laboratory of Jiangxi Province for Persistent Pollutants Control and Resources Recycle, Nanchang Hangkong University, Nanchang 330063, China.

出版信息

J Colloid Interface Sci. 2023 Nov;649:325-333. doi: 10.1016/j.jcis.2023.06.080. Epub 2023 Jun 16.

Abstract

Photocatalytic H evolution is of prime importance in the energy crisis and in lessening environmental pollution. Adopting a single semiconductor as a photocatalyst remains a formidable challenge. However, the construction of an S-scheme heterojunction is a promising method for efficient water splitting. In this work, CdS nanoparticles were loaded onto NiS nanosheets to form CdS/NiS nanocomposites using hollow Ni(OH) as a precursor. The differences in the Fermi energy levels between the two components of CdS and NiS resulted in the formation of a built-in electric field in the nanocomposite. Density functional theory (DFT) calculations reveal that the S-scheme charge transfer driven by the built-in electric field can accelerate the effective separation of photogenerated carriers, which is conducive to efficient photocatalytic hydrogen evolution. The hydrogen evolution rate of the optimized photocatalyst is 39.68 mmol·g h, which is 6.69 times that of CdS under visible light. This work provides a novel strategy to construct effective photocatalysts to relieve the environmental and energy crisis.

摘要

光催化析氢在能源危机和减轻环境污染方面至关重要。采用单一半导体作为光催化剂仍然是一项艰巨的挑战。然而,构建S型异质结是实现高效水分解的一种有前景的方法。在这项工作中,以空心Ni(OH)为前驱体,将CdS纳米颗粒负载到NiS纳米片上,形成CdS/NiS纳米复合材料。CdS和NiS两种组分之间费米能级的差异导致纳米复合材料中形成内建电场。密度泛函理论(DFT)计算表明,由内建电场驱动的S型电荷转移可以加速光生载流子的有效分离,这有利于高效光催化析氢。优化后的光催化剂的析氢速率为39.68 mmol·g⁻¹·h⁻¹,是CdS在可见光下析氢速率的6.69倍。这项工作为构建有效的光催化剂以缓解环境和能源危机提供了一种新策略。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验