Molecular, Cellular and Integrative Neurosciences Program, Colorado State University, Fort Collins, United States.
Department of Biomedical Sciences, Colorado State University,, Fort Collins, United States.
Elife. 2023 Jun 26;12:e86022. doi: 10.7554/eLife.86022.
Ketamine is shown to enhance excitatory synaptic drive in multiple brain areas, which is presumed to underlie its rapid antidepressant effects. Moreover, ketamine's therapeutic actions are likely mediated by enhancing neuronal Ca signaling. However, ketamine is a noncompetitive NMDA receptor (NMDAR) antagonist that reduces excitatory synaptic transmission and postsynaptic Ca signaling. Thus, it is a puzzling question how ketamine enhances glutamatergic and Ca activity in neurons to induce rapid antidepressant effects while blocking NMDARs in the hippocampus. Here, we find that ketamine treatment in cultured mouse hippocampal neurons significantly reduces Ca and calcineurin activity to elevate AMPA receptor (AMPAR) subunit GluA1 phosphorylation. This phosphorylation ultimately leads to the expression of Ca-Permeable, GluA2-lacking, and GluA1-containing AMPARs (CP-AMPARs). The ketamine-induced expression of CP-AMPARs enhances glutamatergic activity and glutamate receptor plasticity in cultured hippocampal neurons. Moreover, when a sub-anesthetic dose of ketamine is given to mice, it increases synaptic GluA1 levels, but not GluA2, and GluA1 phosphorylation in the hippocampus within 1 hr after treatment. These changes are likely mediated by ketamine-induced reduction of calcineurin activity in the hippocampus. Using the open field and tail suspension tests, we demonstrate that a low dose of ketamine rapidly reduces anxiety-like and depression-like behaviors in both male and female mice. However, when in vivo treatment of a CP-AMPAR antagonist abolishes the ketamine's effects on animals' behaviors. We thus discover that ketamine at the low dose promotes the expression of CP-AMPARs via reduction of calcineurin activity, which in turn enhances synaptic strength to induce rapid antidepressant actions.
氯胺酮被证明能增强多个脑区的兴奋性突触传递,这被认为是其快速抗抑郁作用的基础。此外,氯胺酮的治疗作用可能是通过增强神经元 Ca 信号来介导的。然而,氯胺酮是一种非竞争性 NMDA 受体(NMDAR)拮抗剂,可减少兴奋性突触传递和突触后 Ca 信号。因此,令人困惑的是,氯胺酮如何在阻断海马体 NMDAR 的同时增强谷氨酸能和 Ca 活性,从而诱导快速抗抑郁作用。在这里,我们发现氯胺酮处理培养的小鼠海马神经元会显著降低 Ca 和钙调神经磷酸酶的活性,从而提高 AMPA 受体(AMPAR)亚基 GluA1 的磷酸化。这种磷酸化最终导致 Ca 通透性、GluA2 缺失和含有 GluA1 的 AMPAR(CP-AMPAR)的表达。氯胺酮诱导的 CP-AMPAR 表达增强了培养的海马神经元中的谷氨酸能活性和谷氨酸受体可塑性。此外,当给予小鼠亚麻醉剂量的氯胺酮时,它会在治疗后 1 小时内增加海马体中的突触 GluA1 水平,但不增加 GluA2 水平和 GluA1 磷酸化。这些变化可能是由氯胺酮诱导的海马体钙调神经磷酸酶活性降低介导的。通过旷场和悬尾测试,我们证明低剂量的氯胺酮可迅速减少雄性和雌性小鼠的焦虑样和抑郁样行为。然而,当体内给予 CP-AMPAR 拮抗剂时,会消除氯胺酮对动物行为的影响。因此,我们发现低剂量的氯胺酮通过降低钙调神经磷酸酶活性来促进 CP-AMPAR 的表达,进而增强突触强度,从而诱导快速的抗抑郁作用。