Suppr超能文献

用于早期猴痘检测的区块链支持的医疗监测系统。

Blockchain-enabled healthcare monitoring system for early Monkeypox detection.

作者信息

Gupta Aditya, Bhagat Monu, Jain Vibha

机构信息

Manipal University Jaipur, Jaipur, India.

出版信息

J Supercomput. 2023 Apr 20:1-25. doi: 10.1007/s11227-023-05288-y.

Abstract

The recent emergence of monkeypox poses a life-threatening challenge to humans and has become one of the global health concerns after COVID-19. Currently, machine learning-based smart healthcare monitoring systems have demonstrated significant potential in image-based diagnosis including brain tumor identification and lung cancer diagnosis. In a similar fashion, the applications of machine learning can be utilized for the early identification of monkeypox cases. However, sharing critical health information with various actors such as patients, doctors, and other healthcare professionals in a secure manner remains a research challenge. Motivated by this fact, our paper presents a blockchain-enabled conceptual framework for the early detection and classification of monkeypox using transfer learning. The proposed framework is experimentally demonstrated in Python 3.9 using a monkeypox dataset of 1905 images obtained from the GitHub repository. To validate the effectiveness of the proposed model, various performance estimators, namely accuracy, recall, precision, and F1-score, are employed. The performance of different transfer learning models, namely Xception, VGG19, and VGG16, is compared against the presented methodology. Based on the comparison, it is evident that the proposed methodology effectively detects and classifies the monkeypox disease with a classification accuracy of 98.80%. In future, multiple skin diseases such as measles and chickenpox can be diagnosed using the proposed model on the skin lesion datasets.

摘要

猴痘的近期出现对人类构成了危及生命的挑战,并已成为继新冠疫情之后全球关注的健康问题之一。目前,基于机器学习的智能医疗监测系统在基于图像的诊断(包括脑肿瘤识别和肺癌诊断)中已展现出巨大潜力。以类似方式,机器学习的应用可用于猴痘病例的早期识别。然而,以安全的方式与患者、医生和其他医疗专业人员等不同行为主体共享关键健康信息仍是一项研究挑战。受此事实启发,我们的论文提出了一个基于区块链的概念框架,用于使用迁移学习对猴痘进行早期检测和分类。所提出的框架在Python 3.9中使用从GitHub仓库获取的1905张图像的猴痘数据集进行了实验验证。为验证所提模型的有效性,采用了各种性能评估指标,即准确率、召回率、精确率和F1分数。将不同迁移学习模型(即Xception、VGG19和VGG16)的性能与所提出的方法进行了比较。基于比较结果,很明显所提出的方法能够以98.80%的分类准确率有效地检测和分类猴痘疾病。未来,可以使用所提模型在皮肤病变数据集上诊断麻疹和水痘等多种皮肤疾病。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/4243/10118230/d75bd82fd5ad/11227_2023_5288_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验