Suppr超能文献

具有免疫的分数阶 COVID-19 模型的动力学,采用调和发病率均值类型

Dynamics of a fractional COVID-19 model with immunity using harmonic incidence mean-type.

作者信息

Mohankumar Nandhini, Rajagopal Lavanya

机构信息

Department of Mathematics, Coimbatore Institute of Technology, Civil Aerodrome (PO), Coimbatore, Tamilnadu 641014 India.

出版信息

J Appl Math Comput. 2023 May 31:1-16. doi: 10.1007/s12190-023-01877-5.

Abstract

The transmission dynamics of COVID-19 is investigated through the prism of the Atangana-Baleanu fractional model with acquired immunity. Harmonic incidence mean-type aims to drive exposed and infected populations towards extinction in a finite time frame. The reproduction number is calculated based on the next-generation matrix. A disease-free equilibrium point can be achieved globally using the Castillo-Chavez approach. Using the additive compound matrix approach, the global stability of endemic equilibrium can be demonstrated. Utilizing Pontryagin's maximum principle, we introduce three control variables to obtain the optimal control strategies. Laplace transform allows simulating the fractional-order derivatives analytically. Analysis of the graphical results led to a better understanding of the transmission dynamics.

摘要

通过具有获得性免疫的阿坦加纳-巴莱亚努分数阶模型来研究新冠病毒的传播动力学。谐波发病率均值型旨在使暴露人群和感染人群在有限时间内趋于灭绝。基于下一代矩阵计算繁殖数。使用卡斯蒂略-查韦斯方法可以全局实现无病平衡点。利用加法复合矩阵方法,可以证明地方病平衡点的全局稳定性。利用庞特里亚金极大值原理,我们引入三个控制变量以获得最优控制策略。拉普拉斯变换允许对分数阶导数进行解析模拟。对图形结果的分析有助于更好地理解传播动力学。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/7abd/10231860/f9dc60fd5f3c/12190_2023_1877_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验