Suppr超能文献

用于辅助分类器生成对抗网络的联邦迁移学习:框架与工业应用

Federated transfer learning for auxiliary classifier generative adversarial networks: framework and industrial application.

作者信息

Guo Wei, Wang Yijin, Chen Xin, Jiang Pingyu

机构信息

State Key Laboratory for Manufacturing Systems Engineering, Xi'an Jiaotong University, Xi'an, China.

出版信息

J Intell Manuf. 2023 May 5:1-16. doi: 10.1007/s10845-023-02126-z.

Abstract

Machine learning with considering data privacy-preservation and personalized models has received attentions, especially in the manufacturing field. The data often exist in the form of isolated islands and cannot be shared because of data privacy in real industrial scenarios. It is difficult to gather the data to train a personalized model without compromising data privacy. To address this issue, we proposed a Federated Transfer Learning framework based on Auxiliary Classifier Generative Adversarial Networks named ACGAN-FTL. In the framework, Federated Learning (FL) trains a global model on decentralized datasets of the clients with data privacy-preservation and Transfer Learning (TL) transfers the knowledge from the global model to a personalized model with a relatively small data volume. ACGAN acts as a data bridge to connect FL and TL by generating similar probability distribution data of clients since the client datasets in FL cannot be directly used in TL for data privacy-preservation. A real industrial scenario of pre-baked carbon anode quality prediction is applied to verify the performance of the proposed framework. The results show that ACGAN-FTL can not only obtain acceptable performance on 0.81 accuracy, 0.86 precision, 0.74 recall, and 0.79 F1 but also ensure data privacy-preservation in the whole learning process. Compared to the baseline method without FL and TL, the former metrics have increased by 13%, 11%, 16%, and 15% respectively. The experiments verify that the performance of the proposed ACGAN-FTL framework fulfills the requirements of industrial scenarios.

摘要

考虑数据隐私保护和个性化模型的机器学习受到了关注,尤其是在制造领域。在实际工业场景中,数据通常以孤岛形式存在,由于数据隐私问题而无法共享。在不损害数据隐私的情况下收集数据来训练个性化模型很困难。为了解决这个问题,我们提出了一种基于辅助分类器生成对抗网络的联邦迁移学习框架,名为ACGAN-FTL。在该框架中,联邦学习(FL)在客户端的分散数据集上训练全局模型以保护数据隐私,迁移学习(TL)将全局模型的知识迁移到数据量相对较小的个性化模型。由于联邦学习中的客户端数据集因数据隐私保护不能直接用于迁移学习,ACGAN通过生成客户端的相似概率分布数据充当连接联邦学习和迁移学习的数据桥梁。通过预焙烧炭阳极质量预测的实际工业场景验证了所提框架的性能。结果表明,ACGAN-FTL不仅能在准确率0.81、精确率0.86、召回率0.74和F1值0.79上获得可接受的性能,还能在整个学习过程中确保数据隐私保护。与没有联邦学习和迁移学习的基线方法相比,前几个指标分别提高了13%、11%、16%和15%。实验验证了所提ACGAN-FTL框架的性能满足工业场景的要求。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验