Suppr超能文献

基于幂律的Caputo意义下分形-分数阶导数的新型冠状病毒肺炎疫情建模与分析:以巴基斯坦为例

Modeling and analysis of novel COVID-19 outbreak under fractal-fractional derivative in Caputo sense with power-law: a case study of Pakistan.

作者信息

Kubra Khadija Tul, Ali Rooh

机构信息

Department of Mathematics, Government College University Faisalabad, Faisalabad, 38000 Pakistan.

出版信息

Model Earth Syst Environ. 2023 Mar 16:1-18. doi: 10.1007/s40808-023-01747-w.

Abstract

In this paper, a five-compartment model is used to explore the dynamics of the COVID-19 pandemic, taking the vaccination campaign into account. The present model consists of five components that lead to a system of five ordinary differential equations. In this paper, we examined the disease from the perspective of a fractal fractional derivative in the Caputo sense with a power law type kernal. The model is also fitted with real data for Pakistan between June 1, 2020, and March 8, 2021. The fundamental mathematical characteristics of the model have been investigated thoroughly. We have calculated the equilibrium points and the reproduction number for the model and obtained the feasible region for the system. The existence and stability criteria of the model have been validated using the Banach fixed point theory and the Picard successive approximation technique. Furthermore, we have conducted stability analysis for both the disease-free and endemic equilibrium states. On the basis of sensitivity analysis and the dynamics of the threshold parameter, we have estimated the effectiveness of vaccination and identified potential control strategies for the disease using the proposed model outbreaks. The stability of the concerned solution in Ulam-Hyers and Ulam-Hyers-Rassias sense is also investigated. For the proposed problem, some results regarding basic reproduction numbers and stability analysis for various parameters are represented graphically. Matlab software is used for numerical illustrations. Graphical representations are given for different fractional orders and for various parametric values.

摘要

在本文中,我们使用一个五房室模型来探索新冠疫情的动态,同时考虑了疫苗接种活动。当前模型由五个部分组成,由此产生了一个由五个常微分方程构成的系统。在本文中,我们从具有幂律型核的卡普托意义下的分形分数阶导数的角度来研究该疾病。该模型还与2020年6月1日至2021年3月8日期间巴基斯坦的实际数据进行了拟合。对该模型的基本数学特性进行了深入研究。我们计算了模型的平衡点和再生数,并得到了系统的可行域。利用巴拿赫不动点理论和皮卡逐次逼近技术验证了模型的存在性和稳定性准则。此外,我们还对无病平衡态和地方病平衡态进行了稳定性分析。基于敏感性分析和阈值参数的动态变化,我们利用所提出的模型疫情估计了疫苗接种的有效性,并确定了该疾病的潜在控制策略。还研究了在乌拉姆 - 海尔斯和乌拉姆 - 海尔斯 - 拉西亚斯意义下相关解的稳定性。对于所提出的问题,给出了关于基本再生数和各种参数稳定性分析的一些结果的图形表示。使用Matlab软件进行数值说明。给出了不同分数阶和各种参数值的图形表示。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/6359/10019432/0bed38a71869/40808_2023_1747_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验